Neural progenitor cells (NPC) are present throughout life and replenish neurons and glia (astrocytes and oligodendrocytes) through neurogenesis, a process that requires proper migration, proliferation and differentiation of NPC. Neurogenesis appears to be dysfunctional in neurodegenerative disorders including HIV-1 associated dementia (HAD), Alzheimer's and Parkinson's diseases, where dead or injured neurons are not replaced. HAD is a neurodegenerative disorder where HIV-1-infected and activated brain mononuclear phagocytes (MP;perivascular macrophages and microglia) mediate inflammatory conditions that alter brain homeostasis. We recently demonstrated that HIV-1-infected and activated macrophages inhibit neurogenesis but enhance gliogenesis. We propose this gliogenesis is mediated through brain inflammation attributable to the dysregulation of stromal cell-derived factor 1 (SDF-1). SDF-1 is an endogenous ligand for the chemokine receptor, CXCR4, which is highly expressed on human NPC and mediates NPC migration. Improper SDF-1 and CXCR4 function can affect neural repair by impairing NPC migration. SDF-1 is released in response to glial activation, mediated by inflammatory cytokines from HIV-1-infected and activated MP such as Interleukin one beta (IL-12). SDF-1 is elevated in the cerebrospinal fluid of HAD patients. Activated matrix metalloproteinase-2 (MMP-2) is produced by HIV-1 infected and activated MP and cleaves SDF-1 resulting in a neurotoxic fragment. This proposal will examine the role of HIV-1-infected and activated macrophage in brain inflammation and their effects on neurogenesis. We hypothesize HIV-1-infected and immune- activated MP inhibit neuronal differentiation and promote gliogenesis. Specifically, we propose this shift in neurogenesis is dependent upon SDF-1 produced by activated astrocytes. This gliogenesis may be a consequence of modification/degradation of SDF-1 by factors released from HIV-1-infected MP leading to impairment of normal SDF-1/CXCR4 mediated NPC migration, survival, proliferation and differentiation, generating an environment detrimental to CNS repair. Using our human NPC culture system in a severe combined immune deficient (SCID) HIV-1 encephalitis (HIVE) mouse model, this project will mimic HIV-1-infection and immune-activation of brain MP and investigate the effect of CNS inflammation on neurogenesis. Elucidating the mechanisms of SDF-1/CXCR4 influence on neurogenesis may identify new therapeutic strategies for treating HAD and other neurodegenerative disorders.
Globally, about 40 million people are infected with HIV. 10-20% of these individuals will eventually develop HIV-associated dementia (HAD). This work will elucidate mechanisms through which neurogenesis is affected by HAD, which could identify new therapeutic strategies for treating HAD and other neurodegenerative disorders.
Showing the most recent 10 out of 30 publications