The Josephin domain-containing proteins are one of the five major families of deubiquitinating enzymes (DUBs). The founding member of the family is ataxin-3, a polyglutamine protein and the causative agent of the most common inherited ataxia, spinal cerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease). Ataxin-3's DUB activity resides in the molecule's N-terminal half, the so-called Josephin domain. Ataxin-3 is linked to many cellular processes that are related to maintaining protein homeostasis, including the transport of misfolded proteins to aggresomes and the flux of proteins through the endoplasmic reticulum-associated degradation pathway (ERAD). Ataxin-3 can also suppress the toxicity of expanded repeat polyglutamine domains. All of these functions require DUB activity, establishing the biological significance of the Josephin domain and hinting at a link between Josephin DUB activity and neurodegeneration induced by protein misfolding. Three homologs of ataxin-3 are encoded in the human genome: The ataxin-3-like protein (AT3L), Josephin-1, and Josephin-2. All three possess DUB activity, but differ substantially in catalytic efficiency and specificity. Josephin domain-containing homologs are conserved in most eukaryotes, including plants and protozoans, implying that this domain and the DUB activity it expresses are responsible for valuable biological functions. We propose to analyze the molecular structure and function of the human Josephin domain-containing proteins in order to understand how they recognize and act upon substrates and other interacting proteins. We will use X-ray crystallography to determine structures for different Josephin domains, alone and in complex with ubiquitin substrates;characterize the DUB activities of the four human Josephin domain-containing proteins, assessing how they bind and cleave both small and large ubiquitin substrates;explore their ubiquitin-binding activities;and probe the interactions of ataxin-3 with its cellular binding partners.

Public Health Relevance

The Josephin domain proteins appear to function in quality control pathways in human cells. Understanding how the Josephin proteins function will help reveal how cells protect themselves from the potentially toxic effects of protein misfolding. The insights obtained from this work will inform efforts to design therapies for disorders in which the cell's quality control pathways are disrupted, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS065140-02
Application #
7944146
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Gwinn, Katrina
Project Start
2009-09-30
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
2
Fiscal Year
2010
Total Cost
$333,507
Indirect Cost
Name
Drexel University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
002604817
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Rao, Maya V; Williams, Dewight R; Cocklin, Simon et al. (2017) Interaction between the AAA+ ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 292:18392-18407
Weeks, Stephen D; Grasty, Kimberly C; Hernandez-Cuebas, Lisa et al. (2011) Crystal structure of a Josephin-ubiquitin complex: evolutionary restraints on ataxin-3 deubiquitinating activity. J Biol Chem 286:4555-65
Weeks, Stephen D; Grasty, Kimberly C; Hernandez-Cuebas, Lisa et al. (2009) Crystal structures of Lys-63-linked tri- and di-ubiquitin reveal a highly extended chain architecture. Proteins 77:753-9
Loll, Patrick J; Derhovanessian, Ariss; Shapovalov, Maxim V et al. (2009) Vancomycin forms ligand-mediated supramolecular complexes. J Mol Biol 385:200-11