The purpose of this project is to investigate the role of epileptic seizures in oxidative stress. There is a wealth of research that demonstrates that epileptic seizures lead to the formation of reactive oxygen and nitrogen species (ROS and RNS), which cause oxidative damage to DNA, lipids, and proteins. The role of excitotoxic events during epileptic seizures and the subsequent formation of ROS and RNS leading to oxidative stress will be investigated. Microdialysis sampling in discrete brain regions along with simultaneous recording of electrocorticographic (ECoG) activity will be used to probe chemical and electrographic activity changes in the brain associated with seizures. This will provide the ability to correlate biomarker levels with seizure activity. Microdialysis sampling will be used to continuously monitor several biochemical pathways prior to, during, and after induction of seizures. Microdialysis experiments will provide both temporal and spatial information about oxidative stress caused by seizures and the brains response to them. This approach will provide insight into questions that have remained unclear using plasma and urine sampling and standard tissue sampling techniques. Methods previously developed in the PI's laboratory will be used to monitor formation of ROS and RNS, biomarkers for DNA damage and lipid peroxidation, and the neurotransmitter amino acids and catecholamines. A new analytical method will be developed to detect prostanoids resulting from arachidonic acid metabolism. Three experimental models of epilepsy will be used in Wistar rats. The first two models use 3-mercaptopropionic acid (3-MPA) to chemically induce seizures in a controlled manner. For one model the 3-MPA is systemically administered and in the other it is locally administered through the microdialysis probe. A chemical kindling model will then be used, where a sub-threshold dose (for triggering seizures) of pentylenetetrazol will be used to generate seizures of increasing intensity, culminating in a generalized seizure convulsion. In addition, we propose to investigate the role of various modulation agents on the release of known oxidative stress agents during epileptic seizures. Using microdialysis sampling coupled to the advanced analytical methodology, the neurological events leading from seizures to oxidative stress will be investigated. In particular, the temporal relationship between oxidative stress (as measured by ROS and RNS formation), and neuroexcitation (as measured by the GABA/glutamate ratio and the catecholamines) will be determined and correlated to the duration and intensity of seizure episodes.

Public Health Relevance

Epilepsy affects over 1% of the world's population. An often overlooked result of epileptic seizures is oxidative stress. The goal of this project is to elucidae the brain's response due to oxidative stress resulting from seizure activity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS066466-04
Application #
8420439
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Whittemore, Vicky R
Project Start
2009-07-16
Project End
2016-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
4
Fiscal Year
2013
Total Cost
$310,308
Indirect Cost
$99,214
Name
University of Kansas Lawrence
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Fresta, Claudia G; Hogard, Michael L; Caruso, Giuseppe et al. (2017) Monitoring carnosine uptake by RAW 264.7 macrophage cells using microchip electrophoresis with fluorescence detection. Anal Methods 9:402-408
Johnson, Ryan T; Lunte, Craig E (2016) A Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry Method using a Borate Background Electrolyte for the Fingerprinting Analysis of Flavonoids in Ginkgo biloba Herbal Supplements. Anal Methods 16:3325-3332
Scott, David E; Willis, Sean D; Gabbert, Seth et al. (2015) Development of an on-animal separation-based sensor for monitoring drug metabolism in freely roaming sheep. Analyst 140:3820-9
Crick, Eric W; Osorio, Ivan; Frei, Mark et al. (2014) Correlation of 3-mercaptopropionic acid induced seizures and changes in striatal neurotransmitters monitored by microdialysis. Eur J Pharm Sci 57:25-33
Mayer, Andrew P; Osorio, Ivan; Lunte, Craig E (2013) Microperfusion of 3-MPA into the brain augments GABA. Epilepsy Behav 29:478-84
Dorris, Megan K; Crick, Eric W; Lunte, Craig E (2012) A parallel dual-electrode detector for capillary electrophoresis. Electrophoresis 33:2725-32
Cooley, Justin Carl; Lunte, Craig Edward (2011) Detection of malondialdehyde in vivo using microdialysis sampling with CE-fluorescence. Electrophoresis 32:2994-9
Whitaker, Gillian; Lunte, Craig E (2010) Investigation of microdialysis sampling calibration approaches for lipophilic analytes: doxorubicin. J Pharm Biomed Anal 53:490-6