The basal forebrain (BF) is a highly complex brain region that is implicated in a wide range of higher-level neurobiological processes including, cognition, learning, memory and attention, virtually all of which operate on a basis of wakefulness. Dysfunction of BF circuitry is also implicated in the pathogenesis of a host of neuropsychiatric and neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia and the cognitive impairments of normal aging. In its most fundamental neurobiological context however, the BF (as an anatomical constituent of the """"""""ascending reticular activating system"""""""") contains circuitry critical for maintaining behavioral arousal and an aroused cortex, which is the sine qua non for cognition and purposeful behaviors. Remarkably, however, the mechanisms and substrates by which the BF regulates EEG and neurobehavioral arousal remain poorly understood. Much of the difficulty in understanding the neurobiology of the BF is related to its high cellular heterogeneity and complex anatomical organization. In this project we plan to examine the in vivo role of cholinergic, GABAergic and glutamatergic neurons of the BF in the regulation of electrocortical and behavioral arousal. Each of these cell groups has been hypothesized to play an important role in regulating electrocortical and neurobehavioral arousal, although the respective role of each transmitter system in these processes is unresolved. We propose to examine, for the first time, the in vivo effects of cell-type specific lesions of each of these three BF transmitter systems on EEG and behavioral arousal using an adeno-associated viral (AAV) vector containing cre-recombinase injected into the BF of mice harboring loxP-modified alleles of either choline acetyltransferase (ChATflox/flox mice), the vesicular GABA transporter (Vgat flox/flox mice) or the vesicular glutamate transporter 2 (Vglut2 flox/flox mice). Collectively, these studies will provide important information regarding the substrates that are necessary to produce and maintain arousal, including the individual contribution of all three BF neurotransmitter system(s) to this process in a freely behaving, unrestrained animal. While the focal elimination of glutamate, GABA or cholinergic neurotransmission will potentially provide a significant advance in our knowledge regarding the long-term role of these BF transmitter systems in EEG and behavioral arousal, it is possible that there may be substantial compensation by the remaining neurotransmitter systems over time. To address this issue and, also, provide a second experimental model system for increasing the specificity of the linkage between selective transmitter disruption in the BF and EEG/behavioral outcomes, our laboratory has recently developed an AAV containing an ivermectin-gated chloride channel that permits selective and reversible silencing of specific neuronal subpopulations in vivo. By injecting this AAV into the BF of ChAT-IRES-Cre, Vgat-IRES-Cre and Vglut2-IRES- Cre mice we can examine the effects of acutely and reversibly silencing these neuronal subtypes, respectively, on the cortical EEG and other neurobehavioral measures in the freely behaving animal.

Public Health Relevance

This program proposes to determine the respective in vivo role of three neurotransmitter systems comprising the basal forebrain, a highly complex area of the brain that is implicated in a wide-range of higher-level neurobiological processes. In addition to revealing the neurobiological role of the three basal forebrain transmitter systems in normal function, the results from the proposed studies may provide critical insight into the pathogenesis of a host of neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, schizophrenia and the cognitive impairments of normal aging.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS073613-02
Application #
8217064
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Gnadt, James W
Project Start
2011-02-01
Project End
2015-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
2
Fiscal Year
2012
Total Cost
$356,277
Indirect Cost
$114,620
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Anaclet, Christelle; Griffith, Kobi; Fuller, Patrick M (2018) Activation of the GABAergic Parafacial Zone Maintains Sleep and Counteracts the Wake-Promoting Action of the Psychostimulants Armodafinil and Caffeine. Neuropsychopharmacology 43:415-425
Anaclet, Christelle; De Luca, Roberto; Venner, Anne et al. (2018) Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. J Neurosci 38:5168-5181
Todd, William D; Fenselau, Henning; Wang, Joshua L et al. (2018) A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 21:717-724
Rukhadze, Irma; Carballo, Nancy J; Bandaru, Sathyajit S et al. (2017) Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles. Respir Physiol Neurobiol 244:41-50
Pedersen, Nigel P; Ferrari, Loris; Venner, Anne et al. (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8:1405
Chen, Michael C; Vetrivelan, Ramalingam; Guo, Chun-Ni et al. (2017) Ventral medullary control of rapid eye movement sleep and atonia. Exp Neurol 290:53-62
Schallner, Nils; Lieberum, Judith-Lisa; Gallo, David et al. (2017) Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice. Stroke 48:2565-2573
Saper, Clifford B; Fuller, Patrick M (2017) Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44:186-192
Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan et al. (2017) Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 37:1352-1366
Anaclet, Christelle; Fuller, Patrick M (2017) Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 44:139-143

Showing the most recent 10 out of 27 publications