Myelination in the central nervous system (CNS) by oligodendrocytes (OLs) is required for rapid propagation of action potentials. Myelination defects and demyelinating diseases have been associated with a series of mental health-related disorders, including autism spectrum disorders, Down syndrome, CHARGE syndrome, multiple sclerosis, amyotrophic lateral sclerosis, epilepsy, and schizophrenia. At present, however, the mechanistic basis for myelinogenesis and the factors that promote myelin repair have not been fully understood. A large body of work has shown that chromatin-remodeling events govern the transcriptional and epigenetic establishment of cellular differentiation programs. Chromatin remodeling enzymes including histone modifying enzymes and ATP-dependent chromatin remodelers modulate local chromatin structure and facilitate recruitment of essential factors required for gene expression. In previous funding cycle, we demonstrated a critical role of Brg1 (Brahma-related gene-1), the central catalytic subunit of SWI/SNF-like chromatin-modifying enzymatic complexes in the initiation of OPC differentiation. In the previous funding cycle, we demonstrate that Brg1/Smarca4, the central catalytic subunit of SWI/SNF-like chromatin-modifying complexes, is critical for initiation of OPC differentiation, which is prerequisite for subsequent myelination. We further identify a CHARGE syndrome-related Chd7 (chromodomain helicase DNA binding protein 7) as a common target of Brg1/Olig2 during OL development. In this study, we find that an autism spectrum disorder-associated chromatin remodeler Chd8 is highly enriched in myelinating cells in the CNS. Deletion of Chd8 in the oligodendrocyte lineage resulted in severe myelination deficits, suggesting that Chd8 is critical for the control of CNS myelination. The goal of this proposal is to gain a better insight into the molecular basis of the myelination process regulated by Chd8 and its downstream genes. We will utilize conditional in vivo mutagenesis approaches to define the role of Chd8 in CNS myelination and myelin repair by analyzing newly generated conditional knockout mouse strains in a spatiotemporally controlled manner. In addition, we will identify and characterize the direct targets of Chd8 that control the myelination program by employing a combination of genome-wide RNA-sequencing and chromatin-immunoprecipitation-sequencing strategies. The long-term goal of the research proposed here is to foster the development of agents that modulate the activity of Chd8 and its downstream effectors to promote myelination and, of urgent clinical relevance, remyelination. The proposed studies will not only advance our understanding of the mechanisms of CNS myelination, but also identify potential therapeutic targets to promote oligodendrocyte regeneration and myelin repair for the patients with dys- and demyelination-associated disorders including learning disability and mental illnesses.

Public Health Relevance

Myelination defects and demyelinating diseases have been associated with a series of mental health-related disorders, including autism spectrum disorders, Down syndrome, CHARGE syndrome, multiple sclerosis, amyotrophic lateral sclerosis, epilepsy, and schizophrenia. The studies proposed in research plans will provide a better understanding of molecular and chromatin remodeling control of CNS myelination and remyelination. They will not only have scientific merits but also could offer new strategies in treating patients with dys- and demyelination-associated disorders including learning disability and mental illnesses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS075243-07
Application #
9389599
Study Section
Cellular and Molecular Biology of Glia Study Section (CMBG)
Program Officer
Morris, Jill A
Project Start
2012-04-01
Project End
2022-06-30
Budget Start
2017-09-15
Budget End
2018-06-30
Support Year
7
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Gregath, Alexander; Lu, Qing Richard (2018) Epigenetic modifications-insight into oligodendrocyte lineage progression, regeneration, and disease. FEBS Lett 592:1063-1078
Marie, Corentine; Clavairoly, Adrien; Frah, Magali et al. (2018) Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc Natl Acad Sci U S A 115:E8246-E8255
Moyano, Ana Lis; Steplowski, Jeffrey; Wang, Haibo et al. (2018) microRNA-219 Reduces Viral Load and Pathologic Changes in Theiler's Virus-Induced Demyelinating Disease. Mol Ther 26:730-743
He, Li; Yu, Kun; Lu, Fanghui et al. (2018) Transcriptional Regulator ZEB2 Is Essential for Bergmann Glia Development. J Neurosci 38:1575-1587
Koreman, Elijah; Sun, Xiaowei; Lu, Q Richard (2018) Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol Cell Neurosci 87:18-26
Zhao, Chuntao; Dong, Chen; Frah, Magali et al. (2018) Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell 45:753-768.e8
Weng, Qinjie; Wang, Jiaying; Wang, Jiajia et al. (2018) Lenalidomide regulates CNS autoimmunity by promoting M2 macrophages polarization. Cell Death Dis 9:251
Lu, Xu-Feng; Cao, Xiao-Yue; Zhu, Yong-Jie et al. (2018) Histone deacetylase 3 promotes liver regeneration and liver cancer cells proliferation through signal transducer and activator of transcription 3 signaling pathway. Cell Death Dis 9:398
He, Xuelian; Zhang, Liguo; Queme, Luis F et al. (2018) A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 24:338-351
Zuo, Hao; Wood, William M; Sherafat, Amin et al. (2018) Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion. J Neurosci 38:2359-2371

Showing the most recent 10 out of 46 publications