The large conductance, calcium- and voltage-activated potassium (BK) channel is a unique member of the potassium channel family, which has the largest single channel conductance and is dually activated by voltage and cytosolic free Ca2+. BK channels consist of the pore-forming, voltage- and Ca2+-sensing ?-subunits (BK?) either alone or in association with the tissue-specific regulatory subunits including the four previously known -subunits. We recently identified a novel BK channel auxiliary subunit, a leucine-rich repeat (LRR) containing membrane protein LRRC26, which causes an unprecedented large negative shift (~ -150 mV) in voltage dependence of channel activation by greatly enhancing the allosteric coupling between the voltage-sensor activation and the channel's closed-open transition, allowing BK channel activation at even near resting voltages and calcium levels in excitable and non-excitable cells. We have additionally identified three LRRC26- like paralogous proteins that modify the BK channel's voltage dependence of activation to different extents. LRRC26 and its paralogous LRR proteins are structurally and functionally distinct from the -subunits and are thus collectively designated as a family of BK channel ?-subunits.
Three specific aims are designed to determine the physiological relevance and molecular mechanisms of BK channel regulation by these auxiliary ?-subunits: 1) determine the physiological and functional expression of the BK channel ?-subunits in human tissues and cells; 2) determine the biochemical mechanisms of BK channel modulation by the ?-subunits; 3) determine the posttranslational regulation of the ?-subunits' modulatory functions. Molecular biological, biochemical and electrophysiological experiments will be performed to achieve the proposed aims. Overall, the proposed research in this grant application is designed to systematically investigate these auxiliary LRR proteins for their physiological relevance and the underlying molecular mechanisms of channel modulation. The findings from the proposed studies will establish the physiological relevance of a new family of BK channel auxiliary subunits, and provide an in-depth understanding of the molecular mechanisms governing the LRRC26 and its paralogs' unique capacity in shifting the voltage dependence of a voltage-gated ion channel. These studies will thus offer a new molecular basis for an understanding and exploration of the ubiquitously expressed BK channel's diverse physiological functions, and help in creation of novel reagents and therapeutics to rationally manipulate BK channel activity.

Public Health Relevance

The findings from the proposed research will provide a new molecular basis for an understanding and exploration of the ubiquitously expressed BK channel's diverse physiological functions, and help in creation of novel reagents and therapeutics to rationally manipulate BK channel activity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
4R01NS078152-05
Application #
9064233
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Silberberg, Shai D
Project Start
2012-08-01
Project End
2017-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Anesthesiology
Type
Hospitals
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Zhang, Jiyuan; Guan, Xin; Li, Qin et al. (2018) Glutamate-activated BK channel complexes formed with NMDA receptors. Proc Natl Acad Sci U S A 115:E9006-E9014
Li, Qin; Li, Yingxin; Wei, Hua et al. (2018) Molecular determinants of Ca2+ sensitivity at the intersubunit interface of the BK channel gating ring. Sci Rep 8:509
Guan, Xin; Li, Qin; Yan, Jiusheng (2017) Relationship between auxiliary gamma subunits and mallotoxin on BK channel modulation. Sci Rep 7:42240
Yan, Jiusheng; Li, Qin; Aldrich, Richard W (2016) Closed state-coupled C-type inactivation in BK channels. Proc Natl Acad Sci U S A 113:6991-6
Li, Qin; Guan, Xin; Yen, Karen et al. (2016) The single transmembrane segment determines the modulatory function of the BK channel auxiliary ? subunit. J Gen Physiol 147:337-51
Li, Q; Yan, J (2016) Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits. Int Rev Neurobiol 128:51-90
Li, Qin; Fan, Fei; Kwak, Ha Rim et al. (2015) Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary ? subunits. J Gen Physiol 145:543-54
Zhang, Jiyuan; Yan, Jiusheng (2014) Regulation of BK channels by auxiliary ? subunits. Front Physiol 5:401
Chen, Xixi; Yan, Jiusheng; Aldrich, Richard W (2014) BK channel opening involves side-chain reorientation of multiple deep-pore residues. Proc Natl Acad Sci U S A 111:E79-88