Human mind is hallmarked by a continuous interplay between processing information from the physical environment and processing spontaneously generated information from long-term memory in the form of current concerns, future plans, wishes and recollections. This proposal aims to explore how this interplay is made possible by specific brain structures. For this purpose, we propose to study the function of the human posteromedial cortex (PMC) and determine its interaction with lateral parietal cortex (LPC) and medial temporal lobe (MTL) structures known to subserve attention and memory. The PMC is an important part of the brain structures that demonstrate reduced activity during the performance of externally directed attention tasks, while demonstrating higher activity during resting states when subjects are not engaged in any external interactions and when their minds wander. To date, the neurophysiological correlates of PMC function in the human brain, including its anatomical and temporal specificity, remain unexplored. We will address this gap of knowledge by directly monitoring and reversibly altering the activity of the PMC during cognitive tasks of attention and memory in conscious human subjects who are implanted with intracranial electrodes, as part of routine presurgical epilepsy evaluation. The proposed work will be the first to combine direct electrocorticography (ECoG) and electrical brain stimulation (EBS) in the human PMC. The neurophysiological activity of each PMC subregion will be directly recorded with high temporal resolution and individual subject anatomical precision, and will be altered to test the effect of 'transient lesions' in each subregion of the PMC during attention and memory conditions. Our overarching framework is that two PMC subregions, namely the posterior cingulated cortex (PCC) and the retrosplenial cortex (RSC), have non-overlapping roles and selective interactions with the networks of attention and memory, respectively. The resulting progress promises to shed light on the deficits associated with PMC dysfunction, in patients with attention deficit disorders, autism, epilepsy, and dementia.

Public Health Relevance

Human mind is hallmarked by a continuous interplay between processing information from the physical environment and processing spontaneously generated information from long-term memory. This proposal aims to explore how this interplay is made possible by specific brain structures. The resulting progress promises to shed light on the deficits associated with PMC dysfunction, in patients with attention deficit disorders, autism, epilepsy, and dementia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS078396-04
Application #
8831013
Study Section
Mechanisms of Sensory, Perceptual, and Cognitive Processes Study Section (SPC)
Program Officer
Babcock, Debra J
Project Start
2012-03-01
Project End
2016-02-29
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Stanford University
Department
Neurology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Haller, Matar; Case, John; Crone, Nathan E et al. (2018) Persistent neuronal activity in human prefrontal cortex links perception and action. Nat Hum Behav 2:80-91
Perry, Anat; Stiso, Jennifer; Chang, Edward F et al. (2018) Mirroring in the Human Brain: Deciphering the Spatial-Temporal Patterns of the Human Mirror Neuron System. Cereb Cortex 28:1039-1048
Daitch, Amy L; Parvizi, Josef (2018) Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. Proc Natl Acad Sci U S A 115:4785-4790
Fox, Kieran C R; Foster, Brett L; Kucyi, Aaron et al. (2018) Intracranial Electrophysiology of the Human Default Network. Trends Cogn Sci 22:307-324
Kam, J W Y; Szczepanski, S M; Canolty, R T et al. (2018) Differential Sources for 2 Neural Signatures of Target Detection: An Electrocorticography Study. Cereb Cortex 28:9-20
Kucyi, Aaron; Schrouff, Jessica; Bickel, Stephan et al. (2018) Intracranial Electrophysiology Reveals Reproducible Intrinsic Functional Connectivity within Human Brain Networks. J Neurosci 38:4230-4242
Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex et al. (2017) Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity. Proc Natl Acad Sci U S A 114:E4530-E4538
Foo, Francine; King-Stephens, David; Weber, Peter et al. (2016) Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus. Front Hum Neurosci 10:154
Daitch, Amy L; Foster, Brett L; Schrouff, Jessica et al. (2016) Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc Natl Acad Sci U S A 113:E7277-E7286
Rangarajan, Vinitha; Parvizi, Josef (2016) Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation. Neuropsychologia 83:29-36

Showing the most recent 10 out of 26 publications