Huntington's disease (HD) is an inherited neurodegenerative disorder that affects the lives of more than 100,000 people in the US. The complexity of the chronic symptoms and pathology of Huntington's disease (HD) has long puzzled researchers and prevented the progress of therapeutic intervention. However, the primary cause of HD is genetically simple; expanded HD CAG repeats that encode an expanded polyQ region in the huntingtin protein. Thus, understanding the structure and function of the huntingtin protein as it relates to the disease will likely elucidate a fundamental source o HD pathology and be crucial to developing therapies. Since we have developed a series of full-length recombinant human huntingtin proteins, as a resource for structure-function studies, this grant really aims to identify the effects of polyQ expansion on full-length huntingtin in HD and to generate novel targets and discover therapeutic molecules that directly bind to the huntingtin protein and modify its functional activities.
Aim 1 will define the impacts of polyQ expansion on the structure and function of the full-length huntingtin protein by using various biochemical assays and high resolution structural studies (electron microscopy, atomic force microscopy and crystallography).
Aim 2 will systematically identify altered phosphorylation modifications of mutant huntingtin using the purified full-length huntingtins with different polyQ lengths because phosphorylation of mutant huntingtin has been implicated in HD pathogenesis. We will generate and validate the phospho-antibody reagents and use them to identify the specific isoforms of the phosphorylated full-length huntingtins strongly related to HD pathogenesis.
Aim 3 will identify aptamers that modify the impact of the polyQ region on huntingtin structure and function. Aptamers will be used as versatile reagents for high-throughput drug screening because they bind to target proteins with a high specificity and s strong affinity and introduce structural and functional changes of target proteins as similar as by therapeutic molecules. Our results will provide a thorough understanding of the structural and functional properties of full- length huntingtin as a primal disease-cause and lead to identify therapeutic molecules which will be validated in two mice models (CAG knock-in & YAC128) and human neuronal cells differentiated from human iPS from HD patient fibroblast. These will also enable rational design of therapeutics aimed at interfering with the HD disease process before neuronal cells begin to succumb to its cumulative effects.

Public Health Relevance

Huntington's disease (HD) is a neurological and neurodegenerative disorder, for which there is as yet no effective disease-modifying therapeutic. HD is always caused by a CAG triplet repeat expansion in the HD gene that expands a polyglutamine region in the >3,144 amino acid huntingtin protein. Recently, we have developed a series of full-length huntingtin proteins having different polyQ lengths as a resource for structure-function studies. This project is to develop a novel therapeutic target through an understanding of the impact of the expanded polyglutamine region on the full-length huntingtin protein, which will provide the field with new perspectives and promising small molecule candidates for this devastating disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS079651-04
Application #
8842213
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Miller, Daniel L
Project Start
2012-07-01
Project End
2016-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
4
Fiscal Year
2015
Total Cost
$376,417
Indirect Cost
$157,667
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Shin, Baehyun; Jung, Roy; Oh, Hyejin et al. (2018) Novel DNA Aptamers that Bind to Mutant Huntingtin and Modify Its Activity. Mol Ther Nucleic Acids 11:416-428
Shin, Aram; Shin, Baehyun; Shin, Jun Wan et al. (2017) Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Hum Mol Genet 26:1258-1267
Vijayvargia, Ravi; Epand, Raquel; Leitner, Alexander et al. (2016) Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. Elife 5:e11184
Biagioli, Marta; Ferrari, Francesco; Mendenhall, Eric M et al. (2015) Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet 24:2442-57