Previously, there was no conceptual framework for linking the diverse molecular and cellular disruptions seen in the leukodystrophies into a coherent model for the production of the generalized CNS white matter destruction that is the hallmark of these diseases. This lack of a coherent model was particularly problematic for molecular disruptions in astrocytes, which are far removed from the oligodendrocyte myelin that becomes sclerotic. We recently introduced the """"""""Gateway Hypothesis"""""""" to account for the widespread destruction of CNS myelin that characterizes these diseases. We proposed that generalized myelin sclerosis is caused by mutation or immunological disruption of proteins comprising the primary transport pathways for K+ and water within and between cells of the panglial syncytium. We and others had identified proteins of the K+ and water transport pathway that, when mutated or destroyed, disrupt ionic homeostasis, primarily because K+ and water continue to enter the panglial syncytium but are blocked before they can exit. The Gateway Hypothesis suggests that pharmacological agents that reduce K+ entry into the panglial syncytium may provide new therapeutic approach to treating these diseases. Two abundant protein molecules of that pathway - KV1 (the voltage-gated channels of myelinated axons) and Cx29 (a poorly-understood oligodendrocyte connexin that does not form gap junctions) - are proposed to represent the """"""""gateway"""""""" for entry of water and K+ into the panglial syncytium. As such, these tightly-associated proteins, as well as voltage-gated sodium channels at nodes of Ranvier, are proposed as potential targets for pharmacologic intervention in many of the leukodystrophies. The rationale is that by reducing axonal Na+ influx and/or K+ efflux and its coupled influx into the surrounding myelin, the osmotic burden that causes myelin swelling and sclerosis can be reduced sufficiently to allow undamaged K+ and water transport pathways to redistribute the pharmacologically-reduced osmotic load, thereby permitting normal cellular repair mechanisms to partially restore myelin function, allowing for longer-term treatments, potentially including glial stem cell replacement therapies. We propose to use: 1) ultrastructural and super-resolution light microscopic immunocytochemistry;2) molecular pull-down assays;3) expression of Cx29 and KV1 channels in cell culture, with monitoring by intracellular recording electrophysiology;and 4) recording from oligodendrocytes in acute slices of mouse corpus callosum of normal and exercised wildtype and Cx29 knockout mice. We will thus characterize KV1 channels in axon plasma membranes and Cx29 channels in the adjacent innermost layer of myelin and establish functional interaction of those molecules as the K+ """"""""gateway"""""""" into the panglial syncytium. With these new data, the Gateway Hypothesis will provide the framework for identifying which of the leukodystrophies are immediately amenable to pharmacologic intervention and/or stem cell therapies, allowing medical resources to be delivered to the patients who can be most effectively treated.

Public Health Relevance

The devastating diseases of CNS white matter that are called leukodystrophies are caused by such a wide variety of molecular alterations that there has been no unifying approach to treat the swelling and sclerosis of the insulating layer of myelin around nerve fibers that characterize these diseases. Based on ten years of work on the protein molecules that normally provide for K+ and water transport away from the innermost layers of myelin, we proposed the Gateway Hypothesis, which provides a new model for understanding myelin swelling and sclerosis in the leukodystrophies. The proposed research to characterize the molecular pathways for K+ and water entry into myelin will provide the necessary data to develop new drugs that reduce or reverse white matter damage in many of the leukodystrophies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS080153-01A1
Application #
8514423
Study Section
Special Emphasis Panel (ZRG1-MDCN-P (57))
Program Officer
Morris, Jill A
Project Start
2013-05-01
Project End
2018-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
1
Fiscal Year
2013
Total Cost
$434,443
Indirect Cost
$112,483
Name
Colorado State University-Fort Collins
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Larson, Valerie A; Mironova, Yevgeniya; Vanderpool, Kimberly G et al. (2018) Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife 7:
Nagy, James I; Pereda, Alberto E; Rash, John E (2018) Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochim Biophys Acta Biomembr 1860:102-123
Wang, S G; Tsao, D D; Vanderpool, K G et al. (2017) Connexin36 localization to pinealocytes in the pineal gland of mouse and rat. Eur J Neurosci 45:1594-1605
Stout Jr, Randy F; Spray, David C (2017) Cysteine residues in the cytoplasmic carboxy terminus of connexins dictate gap junction plaque stability. Mol Biol Cell 28:2757-2764
Nagy, James I; Pereda, Alberto E; Rash, John E (2017) On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett :
Rash, John E; Vanderpool, Kimberly G; Yasumura, Thomas et al. (2016) KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115:1836-59
Rubio, M E; Nagy, J I (2015) Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 303:604-29
Rash, J E; Kamasawa, N; Vanderpool, K G et al. (2015) Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain. Neuroscience 285:166-93
Yao, Cong; Vanderpool, Kimberly G; Delfiner, Matthew et al. (2014) Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 112:2102-13
Bautista, W; Rash, J E; Vanderpool, K G et al. (2014) Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci 39:757-70

Showing the most recent 10 out of 16 publications