A limited but important degree of neurological recovery occurs after Spinal Cord Injury (SCI). Anatomical plasticity of synaptic connections at multiple levels of the neuraxis from the cerebral cortex to the caudal spinal cord is likely to contribute to this functional recovery. To exploit and optimize plasticity-based recovery of function for SCI, it is essential to define its cellular nature and extent. Anatomical plasticity wthin the cerebral cortex has been examined to a very limited extent after SCI, even though it is a likely site for plasticity. Furthermore, the stability of individual synapses has never been monitored in vivo after SCI. Using time-lapse in vivo two-photon microscopy we will image synaptic connections in the cerebral cortex after SCI to determine the extent of rearrangement at the synaptic level. Importantly, the role of training, CSPG and NgR1 in modulating recovery will be linked to cortical synapse dynamics. Using region-specific conditional gene deletion and optogenetic mapping, we will determine the functional significance of anatomical plasticity in cortical synapses during SCI recovery. The findings have the potential to establish cortically directed therapeutic interventions as cellular targets for SCI rehabilitation.

Public Health Relevance

After Spinal Cord Injury there is partial recovery of function. Enhancing endogenous mechanisms of partial recovery holds great therapeutic promise. Unfortunately, the cellular and molecular basis of natural recovery is not clear. A likely, but undocumented, mechanism is the rearrangement of neural connectivity via plasticity of synapses in cerebral cortex and other sites. We will test the hypothesis that those molecular and rehabilitative interventions that improve behavioral recovery do so by enhancing synaptic rearrangement in the cerebral cortex. The findings have the potential to establish cortically directed therapeutic interventions as key target for SCI recovery.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS080388-03
Application #
8651549
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Jakeman, Lyn B
Project Start
2012-05-15
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Yale University
Department
Neurology
Type
Schools of Medicine
DUNS #
City
New Haven
State
CT
Country
United States
Zip Code
06510
Heiss, Jacqueline K; Barrett, Joshua; Yu, Zizi et al. (2017) Early Activation of Experience-Independent Dendritic Spine Turnover in a Mouse Model of Alzheimer's Disease. Cereb Cortex 27:3660-3674
Dell'Anno, Maria Teresa; Strittmatter, Stephen M (2017) Rewiring the spinal cord: Direct and indirect strategies. Neurosci Lett 652:25-34
Fink, Kathren L; López-Giráldez, Francesc; Kim, In-Jung et al. (2017) Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury. Cell Rep 18:2687-2701
Onorati, Marco; Li, Zhen; Liu, Fuchen et al. (2016) Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Rep 16:2576-2592
Kopp, Marcel A; Liebscher, Thomas; Watzlawick, Ralf et al. (2016) SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open 6:e010651
Bhagat, S M; Butler, S S; Taylor, J R et al. (2016) Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood. Mol Psychiatry 21:1281-9
Wang, Xingxing; Lin, Jun; Arzeno, Alexander et al. (2015) Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models. Invest Ophthalmol Vis Sci 56:1357-66
Siegel, Chad S; Fink, Kathren L; Strittmatter, Stephen M et al. (2015) Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury. J Neurosci 35:1443-57
Zou, Yixiao; Stagi, Massimiliano; Wang, Xingxing et al. (2015) Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. J Neurosci 35:10429-39
Fink, Kathren L; Strittmatter, Stephen M; Cafferty, William B J (2015) Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1-/- Mice. J Neurosci 35:15403-18

Showing the most recent 10 out of 29 publications