Neonatal hydrocephalus is a common developmental anomaly affecting the human nervous system with an estimated incidence of 1 to 3 per 1,000 live births creating an estimated healthcare burden of 2 billion dollars annually. Hydrocephalus leads to the expansion of cerebral ventricles and is associated with significant morbidity and mortality with mortality rates as high as 35%. A significant portion of neonatal hydrocephalus is idiopathic in nature. The major goal of this proposal is the identification of molecular mechanisms underlying hydrocephalus for the purpose of developing novel medical treatments. This goal will be pursued by utilizing mouse models of human ciliopathies. Ciliopathies are a group of disorders that display overlapping phenotypes with a common etiology of cilia defects. Ciliopathy models have described that develop hydrocephalus as a result of altered ependymal cilia beat mechanics resulting in abnormal flow of CSF. In this proposal, we challenge the notion that motile cilia defects are the sole cause of hydrocephalus in ciliopathy models with our central hypothesis that abnormal development of specific neural progenitor cells during early development plays a major role in hydrocephalus. The central hypothesis and the specific aims of this proposal are based on strong preliminary data.
In specific aim 1, we will build upon strong preliminary data that show that abnormal development of specific neural progenitor cells lead to hydrocephalus in a specific mouse model of the human disorder, Bardet-Biedl Syndrome (BBS). We will determine the specific neuroprogenitor cells involved in hydrocephalus, and determine the defective signaling pathways in the neuroprogenitor cells that contribute to hydrocephalus.
In specific aim 2, we will determine whether similar mechanisms apply to other ciliopathy mouse models.
In specific aim 3, we will investigate the potential for modifying the hydrocephalic phenotype in ciliopathy mouse models utilizing pharmaceuticals and genetic methods to manipulate signaling pathways identified in Aim 1 and Aim 2. Successful completion of the research outlined in this application will advance the understanding of cilia dysfunction and cilia related diseases in general, especially the molecular mechanism underlying the pathogenesis of hydrocephalus. The results of this study will have significant implications for therapeutic treatment of neonatal hydrocephalus.

Public Health Relevance

Neonatal hydrocephalus is a common developmental anomaly affecting the human nervous system with an estimated incidence of 1 to 3 per 1,000 live births1-4 creating an estimated healthcare burden of 2 billion dollars annually. The successful completion of this project will lead to insights into novel mechanisms involved in hydrocephalus, the understanding of which is important for identifying risk factors for this disorder. The results will potentially improve diagnosis, genetic risk assessment, and treatment of this important disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS083543-05
Application #
9271245
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Morris, Jill A
Project Start
2013-05-01
Project End
2018-04-30
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
5
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Iowa
Department
Pediatrics
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Weihbrecht, Katie; Goar, Wesley A; Carter, Calvin S et al. (2018) Genotypic and phenotypic characterization of the Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove mouse model. PLoS One 13:e0192755
Kawasaki, Makiri; Izu, Yayoi; Hayata, Tadayoshi et al. (2017) Bardet-Biedl syndrome 3 regulates the development of cranial base midline structures. Bone 101:179-190
Williams, Corey L; Uytingco, Cedric R; Green, Warren W et al. (2017) Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther 25:904-916
Weihbrecht, Katie; Goar, Wesley A; Pak, Thomas et al. (2017) Keeping an Eye on Bardet-Biedl Syndrome: A Comprehensive Review of the Role of Bardet-Biedl Syndrome Genes in the Eye. Med Res Arch 5:
Scott, Charles Anthony; Marsden, Autumn N; Rebagliati, Michael R et al. (2017) Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet 13:e1006936
Guo, Deng-Fu; Cui, Huxing; Zhang, Qihong et al. (2016) The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane. PLoS Genet 12:e1005890
Zhu, Wei; Gramlich, Oliver W; Laboissonniere, Lauren et al. (2016) Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A 113:E3492-500
Heon, Elise; Kim, Gunhee; Qin, Sophie et al. (2016) Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet 25:2283-2294
Muhammad, Emad; Levitas, Aviva; Singh, Sonia R et al. (2015) PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum Mol Genet 24:7227-40
Datta, Poppy; Allamargot, Chantal; Hudson, Joseph S et al. (2015) Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome. Proc Natl Acad Sci U S A 112:E4400-9

Showing the most recent 10 out of 20 publications