Cerebral injury often leads to epilepsy via epileptogenesis, the process by which the brain is transformed into an enduring state (epilepsy) characterized by repeated unprovoked seizures. Severe traumatic brain injury (TBI) is the most common example of epiletogenesis in young adults, and leads to epilepsy in 20-50% of instances. This epileptogenic period provides a window of opportunity where patients at risk for developing seizures may be identified, and where anti-epileptogenic therapy may be administered. Yet, there is no reliable clinical biomarker for epileptogenesis to identify whether epileptogenesis has started and how far it has advanced. Accordingly, the long-term goal of the proposed experiments is to use a rat epileptogenic TBI model to develop a safe, inexpensive and noninvasive electrophysiologic biomarker of epileptogenesis that is based on measures of cortical excitability by transcranial magnetic stimulation (TMS). As a secondary goal, we will test if similar measures can be obtained by cortical EEG. We recently developed methods for focal motor cortex TMS in rats, demonstrated that these reliably reflect the magnitude of GABA-mediated cortical inhibition, and showed that such inhibition is depressed in rat seizure models, including a model of posttraumatic epilepsy. Here we propose to use the rat lateral fluid percussion (LFP) possttraumatic epilepsy model to test (1) whether the loss of cortical inhibition is progressive in time during epileptogenesis, (2) whether loss of intracortical inhibition after injury can predict seizure onset, and (3) whether potentially reversible cellular changes such as loss of GABA-ergic interneurons underlie the TMS-derived measures of cortical inhibition loss. Although the proposed experiments are limited to a rat model of post-TBI epileptogenesis, we anticipate that the results will inform studies of TMS as a biomarker in other forms of epileptogenesis. Further, as we will record EEG in all animals, we will test whether gamma frequency EEG power, which also reflects the integrity of GABA-mediated cortical inhibition, can serve as an epileptogenesis biomarker. Since TMS and EEG are already in wide human use, we anticipate that favorable data from the proposed experiments will be rapidly translated to clinical trials in human TBI.

Public Health Relevance

Traumatic brain injury (TBI) is the most common cause of acquired epilepsy in adults where it leads to epilepsy in 20-50% of instances. Yet after TBI, for a given patient, there is presently no diagnostic tool to predict whether he or she will be among those who develop post-traumatic epilepsy. We propose to obtain insight into the mechanisms of posttraumatic epilepsy and develop transcranial magnetic stimulation (TMS) as a safe and rapid biomarker, a sort of neurologic 'stress test,' which will enable clinicians and researchers t (1) identify whether the biological processes that lead to epilepsy have started after TBI, (2) forecast whether post- traumatic seizures are likely, and (3) identify whether prophylactic strategies aimed to restore normal brain function after TBI and prevent epilepsy onset are working.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS088583-04
Application #
9453046
Study Section
Acute Neural Injury and Epilepsy Study Section (ANIE)
Program Officer
Whittemore, Vicky R
Project Start
2015-03-01
Project End
2020-02-29
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Boston Children's Hospital
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
Damar, Ugur; Gersner, Roman; Johnstone, Joshua T et al. (2018) Alterations in the Timing of Huperzine A Cerebral Pharmacodynamics in the Acute Traumatic Brain Injury Setting. J Neurotrauma 35:393-397
Kaye, Harper L; Gersner, Roman; Boes, Aaron D et al. (2017) Persistent uncrossed corticospinal connections in patients with intractable focal epilepsy. Epilepsy Behav 75:66-71
Hsieh, Tsung-Hsun; Kang, Jing-Wei; Lai, Jing-Huei et al. (2017) Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model. PLoS One 12:e0178186
Hameed, Mustafa Q; Dhamne, Sameer C; Gersner, Roman et al. (2017) Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep 17:11
Hsieh, Tsung-Hsun; Lee, Henry Hing Cheong; Hameed, Mustafa Qadir et al. (2017) Trajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury. Cereb Cortex 27:5509-5524
Jannati, Ali; Block, Gabrielle; Oberman, Lindsay M et al. (2017) Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clin Neurophysiol 128:2268-2278
Meyer, Michaela; Dhamne, Sameer C; LaCoursiere, Christopher M et al. (2016) Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish. PLoS One 11:e0156498
Rubio, Belen; Boes, Aaron D; Laganiere, Simon et al. (2016) Noninvasive Brain Stimulation in Pediatric Attention-Deficit Hyperactivity Disorder (ADHD): A Review. J Child Neurol 31:784-96
Sun, Yan; Lipton, Jonathan O; Boyle, Lara M et al. (2016) Direct current stimulation induces mGluR5-dependent neocortical plasticity. Ann Neurol 80:233-46
Rotenberg, Alexander (2015) Commentary on IL-1? associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia 56:989-90

Showing the most recent 10 out of 11 publications