Stroke is the second leading cause of death and the third leading cause of long-term morbidity worldwide. Among all causes of stroke, intracranial atherosclerotic disease (ICAD) represents 9-15% of strokes in the US, and the percentage is higher in patients of Asian and other non-Caucasian ethnicity. The detection of ICAD currently relies on stenosis measurement and likely underestimates the burden of this disease. Vessel wall imaging of the extracranial (EC) carotid artery is well established. The core technology for characterizing key atherosclerotic plaque features requires the use of multiple contrast weighted (pre, post contrast T1, T2 weighted and luminal) magnetic resonance imaging (MRI) with effective signal suppression of flowing blood. While there is growing expertise with vessel wall imaging in EC carotid artery atherosclerosis, its role in ICAD remains to be studied. The technical challenges for intracranial vessel wall (IVW) imaging are the small caliber and tortuous nature of the intracranial arteries, the surrounding cerebrospinal fluid (CSF) that has similar contrast as the vessel wall itself, the close proximity of the arteries to the skull base and paranasal sinuses that can obscure the vessels, and the large area that needs to be covered to identify multiple lesion sites. In this proposal, we plan to 1) develop a multi-contrast 3D high resolution (HR) IVW MRI technique that consists of time efficient imaging sequences with a novel method for outer wall boundary detection; 2) develop image processing tools to characterize lesion size, distribution, main composition features and luminal surface condition-collectively named 3D wall imaging (3D-WALLI); 3) establish a scoring system with a stronger association with clinical symptoms and ischemic brain lesions than stenosis; and 4) study the score's power to predict secondary stroke and new ischemic lesions. The successful achievement of these aims will substantially expand our understanding of the relationship between ICAD vessel wall characteristics and risk of stroke and 3D-WALLI will help define subgroups at higher risk which may represent a target population for future trials of novel interventions. Given the large global burden of this ischemic stroke subtype, the findings will have broad applicability.

Public Health Relevance

Disease in the arteries within the brain (intracranial artery disease) is believed to be one of the most common causes of stroke worldwide. The goal of this research is to provide new Magnetic Resonance Imaging techniques which will improve detection and diagnoses of disease within the intracranial artery. This will help clinicians select the most appropriate treatment strategy for the individual patient.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS092207-01A1
Application #
9054653
Study Section
Special Emphasis Panel (ZRG1-SBIB-Z (03)M)
Program Officer
Koenig, James I
Project Start
2016-07-01
Project End
2020-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
1
Fiscal Year
2016
Total Cost
$686,679
Indirect Cost
$294,291
Name
University of Washington
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Watase, Hiroko; Sun, Jie; Hippe, Daniel S et al. (2018) Carotid Artery Remodeling Is Segment Specific: An In Vivo Study by Vessel Wall Magnetic Resonance Imaging. Arterioscler Thromb Vasc Biol 38:927-934
Rutman, Aaron M; Vranic, Justin E; Mossa-Basha, Mahmud (2018) Imaging and Management of Blunt Cerebrovascular Injury. Radiographics 38:542-563
Chen, Li; Mossa-Basha, Mahmud; Balu, Niranjan et al. (2018) Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing. Magn Reson Med 79:3229-3238
Mossa-Basha, Mahmud; Huynh, Thien J; Hippe, Daniel S et al. (2018) Vessel wall MRI characteristics of endovascularly treated aneurysms: association with angiographic vasospasm. J Neurosurg :1-9
Chen, Shuo; Ning, Jia; Zhao, Xihai et al. (2017) Fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging. Magn Reson Med 77:753-758
Mossa-Basha, Mahmud; Shibata, Dean K; Hallam, Danial K et al. (2017) Added Value of Vessel Wall Magnetic Resonance Imaging for Differentiation of Nonocclusive Intracranial Vasculopathies. Stroke 48:3026-3033
Mossa-Basha, Mahmud; de Havenon, Adam; Becker, Kyra J et al. (2016) Added Value of Vessel Wall Magnetic Resonance Imaging in the Differentiation of Moyamoya Vasculopathies in a Non-Asian Cohort. Stroke 47:1782-8
Alexander, Matthew D; Yuan, Chun; Rutman, Aaron et al. (2016) High-resolution intracranial vessel wall imaging: imaging beyond the lumen. J Neurol Neurosurg Psychiatry 87:589-97
Zhou, Zechen; Wang, Jinnan; Balu, Niranjan et al. (2016) STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction. Magn Reson Med 75:750-61
Mossa-Basha, Mahmud; Alexander, Matthew; Gaddikeri, Santhosh et al. (2016) Vessel wall imaging for intracranial vascular disease evaluation. J Neurointerv Surg 8:1154-1159