Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is an adult-onset neurodegenerative disease that affects upper and lower motor neurons. The key clinical features in ALS patients include muscle wasting, and progressive loss of spinal motor neurons and upper motor neurons and their axons in the lateral columns of the spinal cord. The past 10 years have witnessed a tremendous expansion in the molecular mechanisms of this devastating disease thanks to the discoveries of genetic mutations that are causally linked to both familial ALS (FALS) and sporadic ALS (SALS). Characterizations of these ?ALS disease genes? suggest that dysfunctions in protein homeostasis via the ubiquitin-proteasome pathways (proteostasis) might contribute to the pathogenesis and disease progression in ALS. Consistent with the genetic data, a key pathological feature in FALS and SALS is accumulation of misfolded proteins in motor neurons, which disrupts normal neuronal functions, including axonal transport, mitochondrial bioenergetics, gene expression, and synaptic connectivity. Persistent accumulation of misfolded proteins eventually triggers endoplasmic reticulum (ER) stress-induced cell death, which leads to neurodegeneration through mechanisms that are poorly understood. This proposal focuses on the neuronal cell death mechanism downstream of the IRE1? pathway of ER stress. We show that ER stress, induced pharmacologically or by mutant SOD1 proteins, activates a highly conserved kinase HIPK2 (homeodomain interacting protein kinase 2) to promote neuronal cell death. Biochemical evidence shows that HIPK2 acts downstream of IRE1?-ASK1 and upstream of JNK to promote ER stress-mediated cell death. In addition, proteomics, phospho-peptide mapping and mutagenesis further show that ER stress activates HIPK2 by promoting phosphorylation on specific Serine and Threonine residues within the kinase domain. Using phospho-HIPK2-specific antibodies, we show that HIPK2 activation in the spinal cord precedes symptom onset in SOD1G93A mice. Importantly, loss of HIPK2 in SOD1G93A;Hipk2-/- mice mitigates neurodegeneration, delays disease onset and prolongs survival. Finally, we have extended our findings of HIPK2 in ER stress to human disease using a large number of spinal cord tissues from FALS and SALS patients. Together, these results support the hypothesis that HIPK2 is an essential target in the downstream of IRE1? pathway that promotes ER stress-induced neuronal cell death in ALS. We propose three multidisciplinary Aims to investigate the robust, yet previously unappreciated role of HIPK2 in ER stress-induced cell death mechanism in ALS. Results from these studies will not only address a major challenge in understanding disease mechanism in ALS, they will also provide new directions to develop potential therapeutic targets to mitigate neuronal cell death in ALS.

Public Health Relevance

ALS is a fatal neurodegenerative disease characterized by progressive loss of motor neurons in brain and spinal cord. By analyzing ALS mouse models and a large number of tissue samples from FALS and SALS patients, we show that misfolded proteins activate a highly conserved protein kinase, called HIPK2, which serves as a molecular switch to promote neuronal cell death, leading to hypothesize that HIPK2 is a feasible therapeutic target for ALS. To test this, we will (1) determine if inhibition of HIPK2 can mitigate mitochondrial damage, neuronal cell death and prolong survival in preclinical models of ALS, and (2) characterize the broader role of HIPK2 in other ALS models.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS098516-01
Application #
9188763
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Gubitz, Amelie
Project Start
2016-07-01
Project End
2021-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
1
Fiscal Year
2016
Total Cost
$346,719
Indirect Cost
$127,969
Name
University of California San Francisco
Department
Pathology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Shang, Yulei; Zhang, Jiasheng; Huang, Eric J (2018) HIPK2-Mediated Transcriptional Control of NMDA Receptor Subunit Expression Regulates Neuronal Survival and Cell Death. J Neurosci 38:4006-4019
Ward, Michael E; Chen, Robert; Huang, Hsin-Yi et al. (2017) Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med 9:
Lombardi, Laura M; Zaghlula, Manar; Sztainberg, Yehezkel et al. (2017) An RNA interference screen identifies druggable regulators of MeCP2 stability. Sci Transl Med 9:
Kao, Aimee W; McKay, Andrew; Singh, Param Priya et al. (2017) Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 18:325-333
Le Pichon, Claire E; Meilandt, William J; Dominguez, Sara et al. (2017) Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9:
Celona, Barbara; Dollen, John von; Vatsavayai, Sarat C et al. (2017) Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. Elife 6:
Shang, Yulei; Huang, Eric J (2016) Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res 1647:65-78
Lee, Sebum; Shang, Yulei; Redmond, Stephanie A et al. (2016) Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis. Neuron 91:41-55
Luo, Sarah X; Timbang, Leah; Kim, Jae-Ick et al. (2016) TGF-? Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning. Cell Rep 17:3233-3245