Support is requested for a multifaceted investigation of congenital myasthenic syndromes (CMS). The CMS are heterogeneous and disabling diseases in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanism(s). We will use the candidate gene approach combined with whole exome sequencing to find the cause of different CMS, determine the mechanism by which the mutant gene causes the CMS, and then use this information to generate structure-function correlations and devise strategies for therapy. The candidate gene approach rests on determining (1) the clinical phenotype, (2) the morphologic phenotype based on cytochemical and ultrastructural features of the endplate (EP), (3) the number of acetylcholine (ACh) receptors (AChRs) per EP, (4) the electrophysiologic phenotype reflected by parameters of neuromuscular transmission in vitro. The mechanism by which the mutant gene causes a CMS is investigated by engineering the mutant and corresponding wild-type gene into a suitable expression system which is then interrogated by appropriate electrophysiologic and biochemical tests. Structure?function correlations rest on further mutagenesis studies and on analysis of the mechanism by which a change in the structure of the mutated protein alters the function of that protein, and how this alteration affects the safety margin of neuromuscular transmission. Strategies for therapy are based on determining the molecular defect caused by the mutation and whether the identified defect increases or decreases the synaptic response to ACh.

Public Health Relevance

Congenital myasthenic syndromes (CMS) arise from defects in proteins at the nerve-muscle junction. They frequently go undiagnosed or misdiagnosed yet their consequences are often highly disabling. The CMS will be studied by a multifaceted approach that will improve their diagnosis, treatment, and prevention. OMB No. 0925-0001/0002 (Rev. 08/12 Approved Through 8/31/2015) Page Continuation Format Page

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS109491-01
Application #
9637505
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Nuckolls, Glen H
Project Start
2019-02-15
Project End
2023-01-31
Budget Start
2019-02-15
Budget End
2020-01-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905