Sepsis is a serious clinical condition with life-threatening organ dysfunction caused by a dysregulated host response to infection. Up to 70% of septic patients and more than 50% sepsis survivors develop neurocognitive dysfunction, a debilitating condition termed sepsis-associated encephalopathy (SAE). While both clinical and experimental data suggest the role of inflammation in the pathogenesis of SAE, the exact causes and the molecular mechanisms leading to cerebral inflammation and neurocognitive dysfunction are not well understood. We have recently shown that host cellular RNAs including microRNAs are released into the blood circulation during sepsis and that circulating host RNA levels are closely associated with sepsis severity in animals. Moreover, extracellular (ex) RNA of different species (human and rodents) and organs (spleen and heart) and certain uridine-rich miRNAs can function as damage-associated molecular patterns (DAMPs) and drive proinflammatory responses through a TLR7-dependent mechanism in peripheral immune cells, in microglial cells, and in intact animals. Based on these information and other published literatures, we hypothesize that innate immune activation driven by ex-miRNA-TLR7 signaling functions as a key mechanism in cerebral inflammation and neurocognitive dysfunction following sepsis. To test the hypothesis, we propose the following specific aims:
Aim 1 : To demonstrate the role of circulating ex-miRNAs in brain inflammation in sepsis;
Aim 2 : To evaluate the role of plasma exosomes, as ex-miRNA carriers, in brain inflammation;
Aim 3 : To test the contribution of ex-miRNAsTLR7 signaling to brain inflammation in sepsis;
Aim 4 : To demonstrate that targeting ex-miRNATLR7 signaling pathways improves the long-term neurocognitive function in sepsis survivors. The overall goal of this proposal is to investigate the function and mechanisms of ex-miRNATLR7 signaling in brain inflammation and neurocognitive dysfunction following sepsis. The anticipated results will provide mechanistic insights into the pathogenesis of sepsis-associated encephalopathy and potential novel therapeutic targets.

Public Health Relevance

Sepsis is a life-threatening condition caused by body?s overwhelming response to infection. For patients who survive sepsis, more than 50% develop neurocognitive dysfunction and memory loss. The goal of the proposed study is to examine the role of brain inflammation in neurocognitive dysfunction in sepsis and to identify potential therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS110567-03
Application #
10093156
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Wong, May
Project Start
2019-05-01
Project End
2024-02-29
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
3
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201