During development, neurons acquire a polarized, elongated, and complex morphology, which requires a significant expansion of plasma membrane surface area. Surface increases have been estimated to reach upward of 20% per day, which far exceeds concomitant neuronal volume increases. We previously demonstrated that SNARE-mediated exocytosis is required during neuritogenesis and axon branching, presumably to provide membrane material to the expanding plasma membrane, which can only stretch ~2-3% prior to rupture. Asymmetric exocytosis has also been implicated in the attractive axonal turning responses that are critical for axon guidance. Achieving proper neuronal morphogenesis and connectivity is central to the formation of a functional nervous system. Together these factors underscore the significance of regulated exocytosis in developing neurons, even prior to synaptogenesis. Over the last 40 years, a multitude of components involved in exocytosis have been identified, although this list is not exhaustive. Further, mechanisms that regulate the mode, progression, frequency, or spatiotemporal organization of vesicle fusion with the membrane, all of which are poised to modulate neuronal morphogenesis, have not been defined. To visualize exocytic events in developing neurons, we express a pH-sensitive variant of GFP (pHluorin) attached to the lumenal side of a v-SNARE, such as VAMP2 or VAMP7, to illuminate the occurrence of fusion pore opening between the acidic vesicular lumen and the neutral extracellular space. Analysis of such images has remained a time-intensive, non-automated bottleneck, delaying understanding of this fundamental cellular behavior. We developed a fully-automated computer- vision software for the detection and analysis of VAMP-pHluorin mediated exocytic events that will quantitatively reveal the spatial and temporal organization and regulation of exocytosis in developing neurons at a level of detail previously unattainable. We exploit this innovative methodology along with unbiased proteomics, microfluidics, biochemical and cell biological approaches to investigate the relationship between exocytosis and neuronal morphogenesis and identifying the molecular mechanisms that regulate exocytosis in developing neurons.

Public Health Relevance

During development, neurons acquire a highly elongated, polarized and complex cell shape that requires a dramatic expansion of the neuronal surface area or plasma membrane, which is hypothesized to be fueled by vesicle fusion with the plasma membrane. We will define mechanisms that regulate the mode, progression, frequency, and organization of vesicle fusion with the plasma membrane of developing neurons, all of which are poised to modulate neuronal cell shape.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS112326-02
Application #
9984554
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Riddle, Robert D
Project Start
2019-08-01
Project End
2024-04-30
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Physiology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599