In 2000, the NCRR awarded the MIT Francis Bitter Magnet Laboratory a Phase 1 program of a 3-phase project to complete a 1-GHz NMR magnet comprised of a low- temperature superconducting (LTS) magnet and a high-temperature superconducting (HTS) insert. With the successful completion of a 700-MHz LTS/HTS magneta 600- MHz LTS magnet and a 100-MHz HTS insertand the Phase 2 program about to end, we are poised to embark on Phase 3, first Phase 3A, to be followed by Phase 3B with an upgraded goal of completing a 1.3 GHz LTS/HTS NMR magnet (LH1.3G). The two most compelling arguments for extending NMR to higher frequencies are better spectral resolution and sensitivity.
The specific aims of the Phase 3A program are to: 1) complete a 600-MHz all-HTS insert (H600) and operate it in the bore of a 500 MHz LTS NMR magnet (L500), already available at FBML, not only to generate a 1.1 GHz field (25.84 T) but also to subject H600 to a magnetic field and mechanical stresses sufficient enough to demonstrate its successful performance in the bore of a 700-MHz LTS magnet (L700) in Phase 3B;2) measure the harmonic errors generated by screening- current fields of H600 itself and in combination with L500;and 3) develop techniques, to be applied to LH1.3G, to ameliorate the harmonic errors of H600.
The specific aims of the Phase 3B program are to: 1) complete a high-resolution 1.3 GHz LTS/HTS NMR magnet, achieved with a combination of H600 completed in Phase 3A and a new L700;and 2) install the LH1.3G as a new powerful tool for NMR research in the MIT/Harvard Center for Magnetic Resonance at FBML. The significance of the Phase 3A program is its direct and indispensable benefit to LH1.3G, in which H600, together with L700, will constitute two key magnet components.Significant goals in Phase 3A, all of which are essential elements required to complete a high-resolution 1.3 GHz LTS/HTS NMR magnet in Phase 3B: 1) completion of a 600 MHz HTS (H600) insert capable of operating in a background field of an LTS 700-MHz NMR magnet (L700);2) completion of a 1.1-GHz NMR magnet comprising the H600 and an 500-MHz LTS NMR magnet;3) the magnetic characterization of H600. The two most compelling arguments for extending NMR to higher field are spectral resolution and sensitivity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Research Project (R01)
Project #
5R01RR015034-09
Application #
8089513
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Levy, Abraham
Project Start
2000-09-30
Project End
2013-05-30
Budget Start
2011-05-31
Budget End
2013-05-30
Support Year
9
Fiscal Year
2011
Total Cost
$535,717
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
Organized Research Units
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun et al. (2011) A 1.3-GHz LTS/HTS NMR Magnet-A Progress Report. IEEE Trans Appl Supercond 21:2092-2095
Hahn, S; Bascuñán, J; Yao, W et al. (2010) Two HTS options for a 600 MHz insert of a 1.3 GHz LTS/HTS NMR magnet: YBCO and BSCCO. Physica C Supercond 470:1721-1726
Hahn, Seung-Yong; Ahn, Min Cheol; Bascuñán, Juan et al. (2009) Nonlinear Behavior of a Shim Coil in an LTS/HTS NMR Magnet With an HTS Insert Comprising Double-Pancake HTS-Tape Coils. IEEE Trans Appl Supercond 19:2285-2288
Ahn, Min Cheol; Yagai, Tsuyoshi; Hahn, Seungyong et al. (2009) Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet. IEEE Trans Appl Supercond 19:2269-2272
Hahn, Seung-Yong; Ahn, Min Cheol; Bobrov, Emanuel Saul et al. (2009) An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets. IEEE Trans Appl Supercond 19:2281-2284
Hahn, S; Bascunan, J; Lee, H et al. (2008) Development of a 700 MHz low-/high- temperature superconductor nuclear magnetic resonance magnet: test results and spatial homogeneity improvement. Rev Sci Instrum 79:026105