Lactation induces substantial changes in maternal calcium and bone metabolism, as the mother's skeleton serves as a major source of calcium in milk production. During lactation, there is a dramatic decline in bone mass and microstructure similar to postmenopausal bone loss, as both phenomena are associated with reduced estrogen levels and increased bone turnover. What is remarkable about lactation-induced bone loss is that bone mass and structure are rapidly restored after weaning. The mechanism that controls the switch from net resorption during lactation to net formation after weaning is not well understood. It has been postulated that the increase in estrogen levels after lactation contributes to bone recovery. However, when used to treat post- menopausal osteoporosis, estrogen replacement therapy (ERT) suppresses both bone resorption and formation, and thus does not restore the deteriorated skeleton in the manner that occurs in lactating women after weaning. During lactation, PTH-related protein (PTHrP) is secreted from the mammary gland into the blood stream. The increased circulating level of PTHrP contributes to the increased rate of bone resorption and bone loss during lactation. However, the endocrine function of PTHrP on mediating post-lactation bone recovery is unclear. A recent study showed that cessation of a 7-day infusion of PTHrP caused an abrupt rebound of bone formation activities. Given the fact that plasma PTHrP levels rapidly decrease post-lactation, we hypothesize that this change in circulating PTHrP plays an important role in stimulating post-lactation bone formation. The overall goal of this study is to define the role of estrogen and circulating PTHrP in the remarkable bone structure and strength recovery after lactation, which may provide new insights into therapeutic strategies for recovering the lost structural integrity associated with postmenopausal osteoporosis.
In Aim 1, unique structural recovery mechanisms of replacing disconnected trabecular rods and perforated trabecular plates during weaning will be elucidated by using in vivo CT imaging and individual trabecular dynamics analysis, and these recovery mechanisms will be contrasted with those of ovariectomized (OVX) rats given ERT.
In Aim 2, the role of the drop in PTHrP levels at weaning will be elucidated by simulating lactation- induced fluctuations in PTHrP and estrogen levels in an OVX model, and by preventing the drop in PTHrP that normally takes place at weaning in post-lactation rats. Results of this study will advance our understanding of systematic regulation of post-lactation bone recovery. These data will also drive our investigations of targeted bone formation by defining local signals that trigge the repair of structural deficits.

Public Health Relevance

The goal of this R03 application is to define the role of estrogen and circulating PTHrP in the remarkable bone recovery post lactation. Unique structural recovery mechanisms of replacing disconnected trabecular rods and perforated trabecular plates during weaning will be elucidated and contrasted with those of ovariectomized rats given estrogen replacement therapy. The role of the abrupt fall in PTHrP levels on triggering structural recovery at weaning will then be elucidated by simulating lactation-induced fluctuations in PTHrP and estrogen levels in an OVX model, and by preventing the drop in PTHrP that normally takes place at weaning in post-lactation rats.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Research Grants (R03)
Project #
1R03AR065145-01A1
Application #
8704520
Study Section
Special Emphasis Panel (ZAR1)
Program Officer
Lester, Gayle E
Project Start
2014-04-01
Project End
2017-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Orthopedics
Type
Schools of Medicine
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
de Bakker, Chantal Mj; Li, Yihan; Zhao, Hongbo et al. (2018) Structural Adaptations in the Rat Tibia Bone Induced by Pregnancy and Lactation Confer Protective Effects Against Future Estrogen Deficiency. J Bone Miner Res 33:2165-2176
de Bakker, Chantal M J; Zhao, Hongbo; Tseng, Wei-Ju et al. (2018) Effects of reproduction on sexual dimorphisms in rat bone mechanics. J Biomech 77:40-47
de Bakker, Chantal Mj; Altman-Singles, Allison R; Li, Yihan et al. (2017) Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats. J Bone Miner Res 32:1014-1026
de Bakker, Chantal M J; Tseng, Wei-Ju; Li, Yihan et al. (2017) Reproduction Differentially Affects Trabecular Bone Depending on Its Mechanical Versus Metabolic Role. J Biomech Eng 139:
de Bakker, Chantal M J; Altman, Allison R; Li, Connie et al. (2016) Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics. Ann Biomed Eng 44:2518-28
Altman, Allison R; de Bakker, Chantal M J; Tseng, Wei-Ju et al. (2015) Enhanced individual trabecular repair and its mechanical implications in parathyroid hormone and alendronate treated rat tibial bone. J Biomech Eng 137:
de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju et al. (2015) ?CT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 73:198-207
Altman, Allison R; Tseng, Wei-Ju; de Bakker, Chantal M J et al. (2015) Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone 81:370-379