RA is a chronic inflammatory autoimmune disorder that starts in the young to middle adult years and may lead to complete joint destruction. There is no cure for RA at present and a substantial percentage of patients do no respond to current therapy, therefore novel therapeutic approaches are urgently needed. Angiogenesis is an early and a critical event that fosters RA chronic inflammation and bone erosion by facilitating unbalanced leukocyte migration and pannus formation. Hence inhibition of angiogenesis may lead to identifying novel therapeutic approaches for RA. Macrophages are hypoxia sensors that initiate and maintain angiogenesis in RA synovium. We found that CCR7 was the most highly upregulated gene in macrophages obtained from RA synovial fluid compared to the normal myeloid cells. Consistently macrophages in the RA synovial tissue lining and endothelial cells in the sublining express elevated levels of CCR7 and its ligand CCL21. We uncovered that synovial CCL21 but not CCL19 is a novel and potent chemoattractant for CCR7+ endothelial cells, which plays a pivotal role in RA tube and blood vessel formation. In RA synovial tissue explants, CCL21 driven angiogenesis can be also induced indirectly through VEGF production. We found that the endothelial CCL21 and CCR7 expression is modulated by IL-17 cascade. We further document that that CCL21 is the missing link between IL-17 and VEGF mediated vascularization as CCL21 blockade markedly suppresses IL-17 induced VEGF expression. Based on our supportive data, we hypothesize that angiogenesis is directly promoted by CCL21 ligation to endothelial CCR7 and indirectly induced through VEGF production from RA synovial tissue fibroblasts. We also postulate that CCL21 links the IL-17 and VEGF angiogenesis process, therefore blockade of CCL21/CCR7 cascade will disrupt the IL-17 and VEGF interconnection, thus resolving RA neovascularization. Hence novel translational studies are proposed to provide an in depth understanding of how CCL21/CCR7 cascade is connected to IL-17 mediated arthritis and vascularization. Moreover we will examine the underlying mechanism by which ligation of CCL21 to CCR7 contributes to RA angiogenesis and whether disruption of CCL21 binding to CCR7 can be used as a promising new therapeutic target in RA through disconnecting the link between IL-17 and VEGF mediated neovascularization.

Public Health Relevance

We have characterized novel genes that are greatly upregulated in rheumatoid arthritis (RA) compared to normal joint tissues and blood cells. Further we have strong evidence how these genes may effect RA disease progression. In this proposal our aim is to identify the inflammatory factors that modulate these genes of interest, determine the mechanism by which these genes contribute to disease pathogenesis and lastly to investigate whether they can be employed as an effective target for RA treatment. Successful completion of this proposal will provide transformative insights into RA pathology that will lead t identifying novel therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Research Grants (R03)
Project #
5R03AR065778-03
Application #
9108145
Study Section
Special Emphasis Panel (ZAR1)
Program Officer
Mao, Su-Yau
Project Start
2014-08-01
Project End
2017-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Elshabrawy, Hatem A; Volin, Michael V; Essani, Abdul B et al. (2018) IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis 21:215-228
Van Raemdonck, Katrien; Umar, Sadiq; Szekanecz, Zoltán et al. (2018) Impact of obesity on autoimmune arthritis and its cardiovascular complications. Autoimmun Rev 17:821-835
Kim, Seung-Jae; Chen, Zhenlong; Essani, Abdul B et al. (2017) Differential impact of obesity on the pathogenesis of RA or preclinical models is contingent on the disease status. Ann Rheum Dis 76:731-739
Elshabrawy, Hatem A; Essani, Abdul E; Szekanecz, Zoltán et al. (2017) TLRs, future potential therapeutic targets for RA. Autoimmun Rev 16:103-113
Kim, Seung-Jae; Chen, Zhenlong; Essani, Abdul B et al. (2016) Identification of a Novel Toll-like Receptor 7 Endogenous Ligand in Rheumatoid Arthritis Synovial Fluid That Can Provoke Arthritic Joint Inflammation. Arthritis Rheumatol 68:1099-110
Elshabrawy, Hatem A; Chen, Zhenlong; Volin, Michael V et al. (2015) The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 18:433-48
Kim, Seung-Jae; Chen, Zhenlong; Chamberlain, Nathan D et al. (2014) Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J Immunol 193:3902-13