Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism and chronic anovulation and it is the most common form of female infertility in the U.S. It has been demonstrated that insulin resistance accompanied by compensatory hyperinsulinemia is, in part, responsible for the hyperandrogenism and anovulation of this disorder. The cellular mechanisms of insulin resistance in PCOS are still largely unknown. D-chiro-inositol phosphoglycan (DCI-IPG) is a nonclassical mediator of insulin action that has been demonstrated to increase glucose utilization. Previous studies have shown that administering a drug similar to the native mediator to women with PCOS increases insulin sensitivity, reduces ovarian androgen production and improves ovulation in these women. Therefore, it seems likely that women with PCOS have a defect in DCI-IPG cellular activity that leads to insulin resistance.
The aim of this application is to determine whether a defect in coupling between D-chiro-inositol phosphoglycan and insulin plays a role in the insulin resistance of PCOS. We propose to assess the coupling of the DCI-IPG to insulin in women with PCOS and normal women: 1) by administering diazoxide to these women in order to temporarily suppress their pancreatic insulin secretion and measure a change in activity in DCI-IPG in plasma of these women following suppression of insulin and 2) by restoring insulin following diazoxide administration using an insulin clamp and measuring the degree to which DCI-IPG activity is also restored during the clamp in normal women versus women with PCOS. Hence, both PCOS women and normal control women will be evaluated for this insulin to DCI-IPG activity relationship. It is our hypothesis that at least one mechanism of insulin resistance in PCOS is due to defective coupling between insulin and DCI-IPG activity. The results of these studies will 1) describe the physiologic, in vivo relationship between insulin and DCI-IPG in normal women; 2) provide a mechanism for insulin resistance in PCOS as it relates to the DCI-IPG insulin signaling cascade; 3) provide the groundwork for further clinical studies to explore the role of defective coupling in other insulin resistant human conditions (such obesity or type 2 diabetes); and 4) lead to novel specific therapies for the insulin resistance of PCOS.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Small Research Grants (R03)
Project #
1R03HD044455-01
Application #
6668732
Study Section
Pediatrics Subcommittee (CHHD)
Program Officer
Parrott, Estella C
Project Start
2003-08-01
Project End
2005-07-31
Budget Start
2003-08-01
Budget End
2004-07-31
Support Year
1
Fiscal Year
2003
Total Cost
$75,000
Indirect Cost
Name
Virginia Commonwealth University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Chang, Franklin; Dell, Gary S; Bock, Kathryn (2006) Becoming syntactic. Psychol Rev 113:234-72