Members of the """"""""regulator of G-protein signaling"""""""" (RGS)-protein superfamily have emerged as critical modulators of specific G-protein-coupled receptor (GPCR) signal transduction pathways. Via their """"""""GTPase accelerating protein"""""""" (GAP) activity, RGS proteins deactivate heterotrimeric G-protein alpha subunits and thereby reduce GPCR signal transduction. Combining existing GPCR agonists with specific RGS domain inhibitors should potentiate cellular responses to these drugs. The diversity of RGS proteins with highly localized and dynamically regulated distributions in the human brain, makes them attractive targets for pharmacotherapy of central nervous system disorders such as Parkinson's disease. Unfortunately, no small molecule inhibitor (or activator) of RGS protein GAP activity is publicly available for study. Therefore, to identify small molecule tools for further advancing knowledge of RGS protein function in specific GPCR signaling pathways, and also to facilitate identification of lead compounds for developing RGS protein directed therapeutics, we will modify and validate novel, real-time, fluorescence-based assays of RGS protein function for automated high throughput molecular screening: a fluorescence resonance energy transfer (FRET)-based binding assay that employs cyan fluorescent protein-labeled G-alpha subunits and yellow fluorescent protein-labeled RGS proteins, a single-turnover GTP hydrolysis assay using a fluorescent sensor for inorganic phosphate production, and an assay of G-alpha nucleotide binding and hydrolysis that employs the fluor-modified nucleotide BODIPY(r) FL 2'-(or-3')-O-(N-(2-aminoethyl)urethane)guanosine 5'-triphosphate. Many useful drugs act by binding a particular type of protein receptor on the cell's surface: a G-protein coupled receptor. Our group has discovered a new family of proteins-the RGS proteins-that interfere with these receptors. We wish to create ways to screen for new drug compounds that can stop RGS proteins from interfering and thereby allow existing drugs to act more potently.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Small Research Grants (R03)
Project #
1R03NS053754-01
Application #
7021836
Study Section
Special Emphasis Panel (ZNS1-SRB-G (01))
Program Officer
Scheideler, Mark A
Project Start
2005-09-30
Project End
2009-08-31
Budget Start
2005-09-30
Budget End
2009-08-31
Support Year
1
Fiscal Year
2005
Total Cost
$73,000
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Kimple, Adam J; Yasgar, Adam; Hughes, Mark et al. (2008) A high throughput fluorescence polarization assay for inhibitors of the GoLoco motif/G-alpha interaction. Comb Chem High Throughput Screen 11:396-409
Kimple, Adam J; Willard, Francis S; Giguere, Patrick M et al. (2007) The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Galpha-interaction face. Biochim Biophys Acta 1774:1213-20