Public concern about the potential effects of endocrine disrupting chemicals (EDCs) on human health has heightened the need for research that assesses the mechanistic effects of exposure to these chemicals. EDC exposure during critical periods of development can result in irreversible changes in tissue differentiation alterig the sex and long-term reproductive potential of offspring supporting a developmental origin of these later lifespan impacts. The later lifespan impacts in many studies are attributed to epigenetic changes in the genome. While a number of studies have focused on DNA methylation as an epigenetic mechanism of toxicity, few studies have investigated the role of microRNAs (miRNAs). miRNAs are small RNAs that regulate expression of genes and proteins. miRNAs play a role in neuroendocrine and reproductive function and disease and are altered following chemical exposure in toxicology studies, but have yet to be investigated as an epigenetic mechanism of atrazine (ATR) toxicity. ATR is an agricultural herbicide commonly reported to contaminate drinking water supplies throughout the United States. ATR is implicated as an endocrine disruptor and a potential carcinogen. ATR is reported to act upon the hypothalamus-pituitary-gonadal (HPG) axis, but the endocrine disrupting properties of ATR are not completely understood. In our ongoing study, transcriptomic analysis immediately following a developmental ATR exposure from 1 to 72 hours post fertilization (hpf) in the zebrafish model system supports alterations in the HPG axis and neuroendocrine control of ATR endocrine disruption alterations. Furthermore, adult zebrafish developmentally exposed to ATR and allowed to mature under normal laboratory conditions exhibited significant alterations in life history traits and reproductive function. Our central hypothesis is that alterations in the HPG axi from a developmental ATR exposure are driven by epigenetic mechanisms. In addition, we hypothesize that ATR endocrine disruption alterations are under neuroendocrine control. The long term goal of our study is to define and link the genetic and epigenetic mechanisms governing the developmental origin of ATR-induced alterations on the HPG axis. In this study we will first identify miRNA expression alterations immediately following a developmental ATR exposure to define epigenetic targets of ATR toxicity. In the second and third aims, we will perform comparative transcriptomic analysis of brain/pituitary and gonadal tissue isolated from adult female and male zebrafish developmentally exposed to ATR. Preliminary transcriptomic data with adult zebrafish brain tissue further supports alterations in HPG signaling. A multitude of confirmation and targeted assays will also be performed to further investigate mechanisms of ATR toxicity on the HPG axis. The data collected in aims 2 and 3 will be coupled to that of aim 1 to link genetic and epigenetic mechanisms of the developmental origin of ATR-induced alterations to the HPG axis. Moreover, throughout this study graduate and undergraduate students will play an active role and gain extensive experience in all aspects of conducting a scientific research study.

Public Health Relevance

Atrazine is a herbicide used throughout the Midwestern agricultural region that is often reported to contaminate drinking water supplies. Atrazine is implicated as an endocrine disruptor and potential carcinogen, but the molecular mechanisms of atrazine toxicity and subsequent impacts on public health are not well understood. This study will identify the genetic and epigenetic mechanisms of the immediate and later life impacts of a developmental atrazine exposure for assessment of human health risk.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
2R15ES019137-02
Application #
8496349
Study Section
Special Emphasis Panel (ZRG1-EMNR-S (90))
Program Officer
Humble, Michael C
Project Start
2010-06-10
Project End
2015-08-31
Budget Start
2013-09-04
Budget End
2015-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$450,144
Indirect Cost
$150,144
Name
Purdue University
Department
Other Health Professions
Type
Schools of Public Health
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Horzmann, Katharine A; Reidenbach, Leeah S; Thanki, Devang H et al. (2018) Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 186:71-82
Wirbisky-Hershberger, Sara E; Sanchez, Oscar F; Horzmann, Katharine A et al. (2017) Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol 109:727-734
Wirbisky, Sara E; Freeman, Jennifer L (2017) Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp Biochem Physiol C Toxicol Pharmacol 194:1-8
Horzmann, Katharine A; Freeman, Jennifer L (2016) Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. Toxics 4:
Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J et al. (2016) Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish. Toxicol Sci 153:149-64
Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S et al. (2016) An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring. Sci Rep 6:21337
Wirbisky, Sara E; Weber, Gregory J; Schlotman, Kelly E et al. (2016) Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem Toxicol 98:25-33
Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S et al. (2015) Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis. Toxicology 333:156-67
Wirbisky, Sara E; Freeman, Jennifer L (2015) Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. Toxics 3:414-450
Weber, Gregory J; Sepulveda, Maria S; Peterson, Samuel M et al. (2013) Transcriptome alterations following developmental atrazine exposure in zebrafish are associated with disruption of neuroendocrine and reproductive system function, cell cycle, and carcinogenesis. Toxicol Sci 132:458-66