Binge alcohol drinking is practiced by an estimated 38 million adults in the United States and factors into more than 50 different injuries or diseases including pneumonia. Clinical and experimental evidence reveals that alcohol consumption reduces the ability to fight infections and alters alveolar macrophage gene expression profiles. Our previous work demonstrated that in a two hit model of binge ethanol intoxication and pulmonary infection, there was prolonged pulmonary inflammation characterized by heightened neutrophil accumulation, dramatically increased pro-inflammatory cytokine interleukin-6 (IL-6) levels, and decreased anti-inflammatory interleukin-10 (IL-10) levels, relative to infection alone. Likewise, our clinical data showed that successfully controlling this excessive pulmonary inflammatory response is essential to reducing morbidity and mortality rates in intoxicated patients with respiratory infections. The anti-inflammatory effects of mesenchymal stem cells (MSCs), including endogenous distal lung MSCs, have become a prominent area of interest as a means of limiting the duration and magnitude of inflammation. MSCs have been characterized as potential modulators of inflammation by virtue of their ability to recruit monocytes and macrophages to the site of injury and alter their phenotype to an anti-inflammatory profile. Both direct contact between MSCs and macrophages and the release of MSC-derived paracrine factors have been shown to induce the anti-inflammatory M2 macrophage phenotype, resulting in the release of the anti-inflammatory cytokine IL-10. Alveolar macrophages play a critical role in both the initiation and the resolution of inflammation in the lung. The proximity of distal lung MSCs and alveolar macrophages in the pulmonary interstitium justifies an investigation into whether ethanol disrupts communication between these two cells types. We hypothesize that binge ethanol intoxication prior to intratracheal infection reduces the frequency and/or function of endogenous lung MSCs, and that this disruption results in excessive pulmonary inflammation. Moreover, after infection, pulmonary inflammation remains elevated because anti-inflammatory mediators derived from lung MSCs are not present and thus cannot mediate a shift of alveolar macrophages from a M1 to a M2 phenotype to help restore homeostasis.
Aim 1 will determine the effect of binge ethanol intoxication and intratracheal infection on the frequency, distribution and function of lung MSCs and alveolar macrophage populations.
Aim 2 will elucidate mechanisms by which ethanol decreases the ability of lung MSCs to reprogram macrophages from a M1 to a M2 phenotype and whether isolated distal lung MSCs expanded in culture can be used to reduce pulmonary inflammation. In summary, this proposal will identify how binge ethanol intoxication alters distal lung MSC and alveolar macrophage frequency and function. At the completion of these studies, we anticipate identifying novel local therapeutic targets which will help reduce pulmonary inflammation. This work may also benefit patients with other pulmonary inflammatory disorders.

Public Health Relevance

Alcohol intoxication increases the risk of lung infection and pneumonia, and because of the resultant excessive pulmonary inflammation in drinkers, consequences include higher rates of lung failure and mortality relative to subjects who had not been drinking. This study proposes to examine the effects of alcohol intoxication on endogenous mesenchymal stem cells (MSCs) in the lungs after infection with the intent of determining how alcohol alters the ability of these multipotent cells to restore lung homeostasis. An additional goal is to test whether treatment with MSCs can reduce pulmonary inflammation, which may be of benefit to patients who suffer from other respiratory conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AA023193-01
Application #
8747857
Study Section
Neuroscience Review Subcommittee (AA)
Program Officer
Jung, Kathy
Project Start
2015-06-01
Project End
2016-03-31
Budget Start
2015-06-01
Budget End
2016-03-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Loyola University Chicago
Department
Surgery
Type
Schools of Medicine
DUNS #
791277940
City
Maywood
State
IL
Country
United States
Zip Code
60153
Curtis, Brenda J; Shults, Jill A; Boe, Devin M et al. (2018) Mesenchymal Stem Cell Treatment Attenuates Liver and Lung Inflammation after Ethanol Intoxication and Burn Injury. Alcohol :
Frankel, John H; Boe, Devin M; Albright, Joslyn M et al. (2018) Age-related immune responses after burn and inhalation injury are associated with altered clinical outcomes. Exp Gerontol 105:78-86
Curtis, Brenda J; Boe, Devin M; Shults, Jill A et al. (2018) Effects of Multi-Day Ethanol Intoxication on Post-Burn Inflammation, Lung Function, and Alveolar Macrophage Phenotype. Shock :
Boule, Lisbeth A; Ju, Cynthia; Agudelo, Marisela et al. (2018) Summary of the 2016 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 66:35-43
Lowery, Erin M; Yong, Meagan; Cohen, Arala et al. (2018) Recent alcohol use prolongs hospital length of stay following lung transplant. Clin Transplant 32:e13250
Hulsebus, Holly J; Curtis, Brenda J; Molina, Patricia E et al. (2018) Summary of the 2017 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 69:51-56
Cannon, Abigail R; Morris, Niya L; Hammer, Adam M et al. (2016) Alcohol and inflammatory responses: Highlights of the 2015 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 54:73-7
Yeligar, Samantha M; Chen, Michael M; Kovacs, Elizabeth J et al. (2016) Alcohol and lung injury and immunity. Alcohol 55:51-59
Curtis, Brenda J; Shults, Jill A; Ramirez, Luis et al. (2016) Remote Burn Injury Increases Pulmonary Histone Deacetylase 1 and Reduces Histone Acetylation. J Burn Care Res 37:321-7
Shults, Jill A; Curtis, Brenda J; Boe, Devin M et al. (2016) Ethanol intoxication prolongs post-burn pulmonary inflammation: role of alveolar macrophages. J Leukoc Biol 100:1037-1045

Showing the most recent 10 out of 12 publications