Alzheimer's disease (AD) is a common neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles. Recent studies support the hypothesis that amyloid beta (A) dynamics in the brain are influenced by the sleep-wake cycle, with increases in the production of soluble A during wakefulness and decreases during slow wave sleep (SWS). In this model, prior to amyloid deposition, brain soluble A levels may be relatively increased in the elderly primarily due to loss of total sleep time and slow wave sleep (SWS) that occur with normal aging and/or secondarily, due to sleep disturbances such as Sleep Disordered Breathing (SDB) or insomnia that are common in late life. We have preliminary evidence showing that: a) SDB advances cognitive decline in normal elderly; b) SDB increases cerebrospinal fluid (CSF) A42 levels in middle age adults; and, c) increased CSF A42 is associated with reduced SWS in normal elderly. Our goal is to test this hypothesis in 20 cognitively normal elderly with no SDB or brain amyloid (Aim 1), and a group of 22 middle age adults with severe SDB treated with therapeutic continuous positive airway pressure (CPAP) and good treatment compliance (Aim 2). In the elderly group, we will evaluate the relationship between SWS and CSF A42/A40 ratio in the absence of SDB or amyloid burden (measured with a 18F-florbetaben PET scan). In the middle age group, we will disrupt sleep by withdrawing CPAP on one night and allow participants to sleep with therapeutic CPAP on a second night. A morning lumbar puncture will be performed in both visits to evaluate the effect of disrupting sleep by acute CPAP withdrawal on CSF A42 levels. This project will be the first to explore the protective effect of SWS on A42 dynamics in a group of elderly subjects as well as the effect of acute sleep disruption by CPAP withdrawal on CSF A42 levels in a well- characterized clinical sample of severe middle age obstructive SDB patients. This proposal may identify: 1) evidence of age-related SWS loss effects on CSF A42 dynamics; 2) a mechanism by which a highly prevalent sleep disorder may contribute to AD pathology; and, 3) SWS as new therapeutic target for AD prevention.

Public Health Relevance

We aim to test the hypothesis that soluble amyloid beta (A) levels in the brain are influenced by the sleep- wake cycle, with increases in the production of A during wakefulness and decreases during slow wave sleep (SWS). Our goal is to: a) evaluate the relationship between SWS and cerebrospinal fluid (CSF) A42/A40 ratio in 20 cognitively normal elderly in the abscense of Sleep Disordered Breathing (SDB) or brain amyloid burden; and, b) to evaluate the effect of disrupting sleep by acute CPAP withdrawal on CSF A42 levels in 22 middle age subjects with severe SDB and good CPAP compliance.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AG049348-01A1
Application #
8970025
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Mackiewicz, Miroslaw
Project Start
2015-08-01
Project End
2017-05-31
Budget Start
2015-08-01
Budget End
2016-05-31
Support Year
1
Fiscal Year
2015
Total Cost
$249,185
Indirect Cost
$94,022
Name
New York University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
de Leon, Mony J; Li, Yi; Rusinek, Henry (2018) Reply: Cerebrospinal Fluid, Hyposmia, and Dementia in Alzheimer Disease: Insights from Dynamic PET and a Hypothesis. J Nucl Med 59:718-719
de Leon, Mony J; Pirraglia, Elizabeth; Osorio, Ricardo S et al. (2018) The nonlinear relationship between cerebrospinal fluid A?42 and tau in preclinical Alzheimer's disease. PLoS One 13:e0191240
Sharma, Ram A; Varga, Andrew W; Bubu, Omonigho M et al. (2018) Obstructive Sleep Apnea Severity Affects Amyloid Burden in Cognitively Normal Elderly. A Longitudinal Study. Am J Respir Crit Care Med 197:933-943
Cedernaes, Jonathan; Osorio, Ricardo S; Varga, Andrew W et al. (2017) Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer's disease. Sleep Med Rev 31:102-111
de Leon, Mony J; Li, Yi; Okamura, Nobuyuki et al. (2017) Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET. J Nucl Med 58:1471-1476
Lanctôt, Krista L; Amatniek, Joan; Ancoli-Israel, Sonia et al. (2017) Neuropsychiatric signs and symptoms of Alzheimer's disease: New treatment paradigms. Alzheimers Dement (N Y) 3:440-449
Varga, Andrew W; Ducca, Emma L; Kishi, Akifumi et al. (2016) Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation. Neurobiol Aging 42:142-149
Osorio, Ricardo S; Ducca, Emma L; Wohlleber, Margaret E et al. (2016) Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects. Sleep 39:1253-60
Spiegel, Jonathan; Pirraglia, Elizabeth; Osorio, Ricardo S et al. (2016) Greater specificity for cerebrospinal fluid P-tau231 over P-tau181 in the differentiation of healthy controls from Alzheimer's disease. J Alzheimers Dis 49:93-100
Varga, Andrew W; Wohlleber, Margaret E; Giménez, Sandra et al. (2016) Reduced Slow-Wave Sleep Is Associated with High Cerebrospinal Fluid A?42 Levels in Cognitively Normal Elderly. Sleep 39:2041-2048