The ability to genetically manipulate insect disease vectors such as the malaria vector mosquito Anopheles gambiae remains rudimentary relative to the abundance of molecular tools that are currently available in model insects such as Drosophila. Recently, artificial nucleases have allowed targeted genome editing in species, such as the zebrafish and rat, that previously lacked effective tools. These chimeric nucleases combine a programmable sequence-specific DNA-binding domain with a non-specific nuclease domain to generate a double strand break at a desired genomic locus, which when imprecisely repaired can result in gene inactivation (""""""""knockouts""""""""). If these lesions are generated within the embryonic germline the propagation of targeted mutant alleles is possible. In order to enable this approach for Anopheles gambiae, we will design and optimize a series of custom nucleases targeting a pair of well-characterized odorant receptor (AgOr) genes that play essential roles in olfactory signal transduction. In these studies, we will compare two different programmable nuclease platforms for their efficiency in promoting gene inactivation in the Anopheles germline, with the goal of establishing a robust reverse genetic approach for this organism. The utility of this strategy will be demonstrated by evaluating the effect of various AgOr knockouts on chemosensory responses in adult and larval stage mosquitoes. In addition to advancing our basic knowledge of chemosensory signal transduction in this important disease vector, the proposed studies, if successful, should provide a basis for the laboratory- based application of these and related gene modification tools in Anopheles and a wide range of related vector species.
The transmission of human malaria through mosquito bites is a leading cause of worldwide mortality and morbidity despite decades of research. This project is focused on the developing genetic tools that will significantly enable mosquito research and provide a more detailed understanding of the mosquito's sense of smell. These advances could eventually lead to the development of new chemicals and approaches that reduce the transmission of malaria and other mosquito borne diseases.
Markert, Matthew J; Zhang, Ying; Enuameh, Metewo S et al. (2016) Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis. G3 (Bethesda) 6:905-15 |