Mycobacterium tuberculosis is the most deadly bacterial pathogen in the world, killing 1.2 million people yearly and infecting over 8 million (WHO, 2013). Although chemotherapy against TB exists, a rapid global increase of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) cases makes new drugs with novel killing mechanisms an urgent need. A major drawback of current TB chemotherapy is its long duration, which increases the probability of relapse and the emergence of drug resistance. The underlying problem of this phenomenon is a population of non-replicating, drug-tolerant bacilli, the so-called persisters. However, current TB drugs are mainly effective against replicating and metabolically active bacteria. Preferably, new drugs kill fast (within weeks) and target actively growing as well as persister cells. Using a multidisciplinary approach, we have identified a novel drug target in methionine biosynthesis of M. tuberculosis. Our preliminary results are very promising, as they show rapid in vitro sterilization of a M. tuberculosis methionine auxotroph as well as complete lack of virulence in immunocompetent and immunocompromised mice. This is intriguing because most available TB antibiotics do not rapidly sterilize cultures. Metabolomics and transcriptomic analysis revealed a systemic metabolic shutdown by an unprecedented multi-target inhibition mechanism. The prospect of killing M. tuberculosis by causing rapid biosynthetic and metabolic seizure is very attractive for drug discovery. The goal of this proposal is to validate this drug target in vitro and in vivo and o develop a reporter strain for whole cell inhibitor screening. This will set the stage for a comprehensive high-throughput inhibitor screen against this target in the near future.

Public Health Relevance

Mycobacterium tuberculosis is the most deadly bacterial pathogen worldwide. The rapid global increase of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) cases makes new drugs with new mechanisms of action an urgent need. We propose to validate a new drug target that has the potential to rapidly eliminate persistent M. tuberculosis from its host. The proposed mechanism of killing is by seizure of multiple indispensable metabolic pathways much like a multi-organ failure in mammals. This has the prospect of being a completely new way of killing M. tuberculosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI119573-02
Application #
9214311
Study Section
Special Emphasis Panel (ZRG1-IDM-B (80)S)
Program Officer
Kraigsley, Alison
Project Start
2016-02-15
Project End
2018-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
2
Fiscal Year
2017
Total Cost
$208,750
Indirect Cost
$83,750
Name
Albert Einstein College of Medicine, Inc
Department
Type
Domestic Higher Education
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Kurthkoti, Krishna; Amin, Hamel; Marakalala, Mohlopheni J et al. (2017) The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. MBio 8:
Berney, Michael; Berney-Meyer, Linda (2017) Mycobacterium tuberculosis in the Face of Host-Imposed Nutrient Limitation. Microbiol Spectr 5:
Cook, Gregory M; Hards, Kiel; Dunn, Elyse et al. (2017) Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiol Spectr 5:
Kalia, Nitin P; Hasenoehrl, Erik J; Ab Rahman, Nurlilah B et al. (2017) Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci U S A 114:7426-7431
Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E et al. (2016) Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. J Biol Chem 291:7060-9