Plasmodium falciparum causes the deadliest form of malaria, which is responsible for nearly one million deaths annually. New therapies are urgently needed to treat this disease, due to widespread chloroquine resistance and emerging resistance to artemisinins. P. falciparum possesses an essential metabolic pathway, non- mevalonate isoprenoid biosynthesis (the MEP pathway), which is not present in humans. This pathway is a particularly enticing antimalarial drug target because it is shared by other important human pathogens, including Gram-negative bacteria and Mycobacterium tuberculosis. The long-term goal is to develop new therapies for treatment of P. falciparum malaria. We are targeting the first-dedicated enzyme of the MEP pathway, IspC, and we have progressed from target validation and hit identification to the discovery of a novel class of antima- larial compounds. The objectives of this proposal are to advance our antimalarial hit compounds through lead development and optimization and to provide biological support for their mechanism-of-action. Our objectives will be met through two specific aims: 1) generate an optimized lead molecule through iterative medicinal chemical strategies; 2) establish the cellular mechanism-of-action of our compounds. Our approach is innovative, since we have taken an innovative approach to inhibitor design to identify an IspC inhibitor with highly potent antimalarial activity. The proposd research is significant, because we will progress in development of new, much-needed antimalarial therapies.

Public Health Relevance

This research is highly relevant to public health because malaria kills many people worldwide each year. Our proposal will advance a new strategy to target a malaria-specific metabolic pathway. These results may lead to development of novel antimalarial therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI123808-01
Application #
9092096
Study Section
Special Emphasis Panel (ZRG1-IDM-T (82))
Program Officer
Mcgugan, Glen C
Project Start
2016-03-15
Project End
2018-02-28
Budget Start
2016-03-15
Budget End
2017-02-28
Support Year
1
Fiscal Year
2016
Total Cost
$252,264
Indirect Cost
$69,245
Name
Washington University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Schaber, Chad L; Katta, Nalin; Bollinger, Lucy B et al. (2018) Breathprinting Reveals Malaria-Associated Biomarkers and Mosquito Attractants. J Infect Dis 217:1553-1560
Wang, Xu; Edwards, Rachel L; Ball, Haley et al. (2018) MEPicides: ?,?-Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. J Med Chem 61:8847-8858
Guggisberg, Ann M; Sayler, Katherine A; Wisely, Samantha M et al. (2018) Natural History of Plasmodium odocoilei Malaria Infection in Farmed White-Tailed Deer. mSphere 3:
Mathews, Emily S; Odom John, Audrey R (2018) Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res 7:
Kafai, Natasha M; Odom John, Audrey R (2018) Malaria in Children. Infect Dis Clin North Am 32:189-200
Edwards, Rachel L; Brothers, Robert C; Wang, Xu et al. (2017) MEPicides: potent antimalarial prodrugs targeting isoprenoid biosynthesis. Sci Rep 7:8400
Suazo, Kiall F; Schaber, Chad; Palsuledesai, Charuta C et al. (2016) Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep 6:38615
Guggisberg, Ann M; Sundararaman, Sesh A; Lanaspa, Miguel et al. (2016) Whole-Genome Sequencing to Evaluate the Resistance Landscape Following Antimalarial Treatment Failure With Fosmidomycin-Clindamycin. J Infect Dis 214:1085-91
San Jose, GĂ©raldine; Jackson, Emily R; Haymond, Amanda et al. (2016) Structure-Activity Relationships of the MEPicides: N-Acyl and O-Linked Analogs of FR900098 as Inhibitors of Dxr from Mycobacterium tuberculosis and Yersinia pestis. ACS Infect Dis 2:923-935
Price, Kathryn E; Armstrong, Christopher M; Imlay, Leah S et al. (2016) Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Sci Rep 6:36777

Showing the most recent 10 out of 11 publications