Human deficiency virus-1 (HIV) infection increases the risk of atherosclerosis even in the absence of detectable viral load. Thus, the latent HIV reservoir established during early infection may impact host cells through epigenetic interactions. Furthermore, antiretroviral therapy (ART) may also affect the host cells via epigenetic mechanisms. Exosomes are nanovesicles that are formed by the fusion of an intracellular multivesicular body with the cell membrane. They are widely distributed in serum, urine, and other biological fluids. As important transfer vehicles for intercellular communication, exosomes can stimulate target cells via the transfer of various bioactive molecules, such as RNAs, including mRNAs and microRNAs, proteins, and lipids, to exert their biological functions. This mechanism of cell-cell communication is more important than direct cell-cell contact as it allows for communication to a large number of cells either locally or at dispersed sites, such as endothelial progenitor cells (EPCs) residing in the bone marrow, affecting their functions. Dysfunctional EPCs are deficient in vascular repair and are associated with atherosclerosis development. We and others have shown that HIV-infected individuals have decreased circulating EPC levels. We have also demonstrated that these EPCs exhibit a senescent phenotype with impaired repair capability, relative to the same cells from HIV seronegative subjects. Our goal for this proposal is to understand how HIV affects EPCs and atherogenesis when the viruses are below the level of detection by standard assays, thus establishing the missing link between latent HIV infection (residual low-level viremia) and the EPC changes observed in previous studies. Our central hypotheses are that the persistent residual low-level viremia detected only by ultrasensitive RT-PCR assays in most patients treated with ART affects the physical characteristics and quantity of exosomes, as well as their exosomal RNA (ex-RNA) contents in blood and urine, which may in turn serve as biomarkers for EPC dysfunction and atherosclerosis, and that some of the candidate ex-RNAs from blood may mediate the effects of HIV on EPC senescence, resulting in accelerated atherosclerosis. We will test these hypotheses in two Aims.
Aim 1 will test the hypothesis that HIV infection significantly alters the quantity and physical characteristics of serum and urine exosomes and their ex-RNA content, which in turn may serve as biomarkers for EPC dysfunction and atherosclerosis.
Aim 2 will test the hypothesis that candidate ex-RNAs derived from serum exosomes mediate HIV infection-induced EPC senescence and that modification of these ex-RNAs will abrogate HIV infection-associated EPC senescence and functional impairment.

Public Health Relevance

We propose to study how latent HIV infection contributes to impaired endothelial progenitor cell (EPC) functionality and the development of accelerated atherosclerosis in patients treated with antiretroviral therapy. We will identify biomarkers that are predictive of cardiovascular disease in HIV patients, based on exosomes and exosomal RNAs (ex-RNAs), which are present in many bio-fluids including blood and urine. In addition, we will determine if ex-RNAs from the blood mediate the effects of HIV on EPCs and the cardiovascular system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI136898-01A1
Application #
9601300
Study Section
AIDS Clinical Studies and Epidemiology Study Section (ACE)
Program Officer
Chiou, Chen-Chia Christine C
Project Start
2018-06-07
Project End
2020-05-31
Budget Start
2018-06-07
Budget End
2019-05-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Miami School of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146