Great demand for novel pain therapies exists for chronic pain states. The arachidonic acid (ARA) cascade is a pivotal inflammatory pain pathway, and many studies addressed the cyclooxygenase (cox) and lipoxygenase (lox) branches of this cascade. However, the emerging importance of a third branch, the cytochrome P450 pathway, offers novel alternatives for pain modulation. In contrast to the inflammatory cox and lox metabolites, the cytochrome P450-generated ARA metabolites, epoxyeicosatrienoic acids (EETs), are potent physiological anti-inflammatory/antihyperalgesic molecules. These bioactive lipids have very short half lives and inhibiting their degradation mediated by soluble epoxide hydrolase (sEH, EC 3.3.2.3) leads to antinociception. Inhibitors of sEH are effective in models of inflammatory and neuropathic pain, but it is unclear how sEH inhibition attenuates pain, warranting further investigation of this novel pathway. The sEH is well expressed in the peripheral and central nervous system, in the neurons and the glial cells, with spatial selectivity of expression among brain regions. Inhibitors of sEH (sEHIs) block nocifensive behavior, while leaving intact normal nociceptive and motor function. Thus in this study we will test the hypothesis that epoxygenated fatty acids and sEHI have a modulatory role in pain pathophysiology. To address this hypothesis, the levels of the EpFAs and their degradation products in the skin and the lumbar spinal cord in two distinct models of pain will be monitored. Levels of EpFAs will then be modulated in two distinct models of pain by different approaches;a) by exogenous EpFAs, b) by inhibiting the sEH, c)by inhibiting phosphodiesterases and d) by novel synthetic analogues of EpFAs that are resistant to sEH mediated degradation. We will utilize the carrageenan induced inflammatory pain model to identify anti- hyperalgesic EpFAs. The bioactivity of anti-nociceptive EpFAs will be validated in a clinically relevant model, the incisional pain model. We will use a combination of behavioral assays, biochemical and metabolomic analysis to understand the interactions of EpFAs with nociceptive pathways. We will produce a characteristic/diagnostic LC/MS/MS generated metabolomic profile of the intraplantar carrageenan and the plantar incisional pain models in rats. The incisional pain in particular is less well studied in regard to alterations in bioactive lipid metabolites. The target metabolites (80+ bioactive lipids) are from all three branches of the AA cascade including major cox, lox, cytochrome P450 and the sEH products including lipid metabolites of EPA and DHA, allowing us to investigate metabolite flux and crosstalk between biological cascades. The proposed studies will result in an advanced understanding of the antinociceptive mechanism of action of EpFAs and sEH inhibitors, and provide novel insights to the underlying mechanisms of lipidomic and biochemical alterations in response to pain. The knowledge generated by these experiments is likely to lead to the development of novel classes of agents that target pathways that have not been recognized previously.

Public Health Relevance

Inflammation and pain are debilitating conditions associated with a multitude of diseases and critical national health problems. Lipids and in particular arachidonic acid plays a pivotal role in the development and maintenance of inflammation and pain. Inhibition of sEH is analgesic through modulating a novel lipid related pathway. In this project we propose to study the analgesic and anti- inflammatory effects of inhibition of sEH and test if inhibition of sEH is effective in a clinically relevant model of postsurgical pain. Targetig previously unexplored analgesic pathways such as the sEH is expected to lead to novel drugs with better efficacy and reduced side effects allowing physicians to treat painful conditions more effectively.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AR062866-01A1
Application #
8446055
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Witter, James
Project Start
2013-02-15
Project End
2015-01-31
Budget Start
2013-02-15
Budget End
2014-01-31
Support Year
1
Fiscal Year
2013
Total Cost
$196,350
Indirect Cost
$68,850
Name
University of California Davis
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Goswami, Sumanta Kumar; Rand, Amelia Ann; Wan, Debin et al. (2017) Pharmacological inhibition of soluble epoxide hydrolase or genetic deletion reduces diclofenac-induced gastric ulcers. Life Sci 180:114-122
Goswami, Sumanta Kumar; Wan, Debin; Yang, Jun et al. (2016) Anti-Ulcer Efficacy of Soluble Epoxide Hydrolase Inhibitor TPPU on Diclofenac-Induced Intestinal Ulcers. J Pharmacol Exp Ther 357:529-36
Ulu, Arzu; Inceoglu, Bora; Yang, Jun et al. (2016) Inhibition of soluble epoxide hydrolase as a novel approach to high dose diazepam induced hypotension. J Clin Toxicol 6:
Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun et al. (2015) Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE? induced pain model. Toxicol Appl Pharmacol 289:419-27
Kitamura, Seiya; Morisseau, Christophe; Inceoglu, Bora et al. (2015) Potent natural soluble epoxide hydrolase inhibitors from Pentadiplandra brazzeana baillon: synthesis, quantification, and measurement of biological activities in vitro and in vivo. PLoS One 10:e0117438
Kodani, Sean D; Hammock, Bruce D (2015) The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 43:788-802
Sasso, Oscar; Wagner, Karen; Morisseau, Christophe et al. (2015) Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive. Pharmacol Res 97:7-15
Inceoglu, Bora; Bettaieb, Ahmed; Trindade da Silva, Carlos A et al. (2015) Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc Natl Acad Sci U S A 112:9082-7
Wagner, Karen; Yang, Jun; Inceoglu, Bora et al. (2014) Soluble epoxide hydrolase inhibition is antinociceptive in a mouse model of diabetic neuropathy. J Pain 15:907-14
Wagner, Karen; Vito, Steve; Inceoglu, Bora et al. (2014) The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat 113-115:2-12

Showing the most recent 10 out of 12 publications