Innate immune sensors detect nucleic acid from viral and bacterial infections to clear infection, and also detect endogenous nucleic acid from stressed or dying cells. Toll-like receptors have long been known to detect nucleic acid, while nucleic acid sensors within the cytosol have only recently been discovered. Activation of cytosolic DNA sensor pathways has been associated with autoimmune disease in which DNA from apoptotic cells accumulates. In addition, endogenous sources of DNA within cells can activate these pathways, including oxidized, damaged DNA that accrues with aging and can escape degradation, as well as DNA derived from replication of endogenous retroelements within the human genome. Despite the importance of these pathways, little is known about their role in cell types other than macrophages and dendritic cells. Data from our laboratory demonstrate a potentially important role for cytosolic DNA sensor pathways in bone that may provide insight into the bone loss occurring in aging and in certain autoimmune diseases. Several cytosolic DNA sensors signal through an ER-associated protein, stimulator of interferon genes (STING), including interferon-inducible protein 16 (IFI16/p204) and cyclic GMP-AMP synthase (cGAS), resulting in the production of type I interferons and proinflammatory cytokines. The cytosolic DNA sensor AIM2 does not signal through STING, but instead coordinates the assembly of an inflammasome complex, resulting in IL-1b production. We demonstrate that cytosolic DNA sensors are expressed in both osteoclast (OC) and osteoblast (OB)-lineage cells and that STING deficient mice are osteopenic, whereas AIM2 deficient mice accrue bone in long bones. Furthermore, STING and AIM2 differentially modulate the bone phenotype in a mouse model of arthritis in which cytoplasmic DNA accumulates due to deficiency in DNaseII. We hypothesize that the STING and AIM2 pathways regulate OC and/or OB differentiation/function.
Aim 1 will determine the cell-intrinsic role of the STING and AIM2 pathways in OC differentiation and/or function. Part A will determine the role of STING in osteoclastogenesis through regulation of the inhibitor of OC function, A20, or through production of cytokines. Part B will determine inflammasome-dependent or independent roles of AIM2 in OC differentiation/function. We will explore the role of these pathways in OBs as an alternative approach. Finally, in Aim 2 we will determine the impact of the STING and AIM2 pathways on expression of macrophage-derived cytokines/factors that regulate bone remodeling. This proposal explores the entirely novel hypothesis that cytosolic DNA sensors and their ligands regulate bone remodeling and may be relevant to pathologic bone remodeling in aging and autoimmunity.

Public Health Relevance

This grant explores the novel hypothesis that innate immune cytosolic DNA sensor pathways regulate cells within bone to alter bone volume. Discovery of new pathways linking the skeletal and immune systems will provide critical insights that may expand the potential targets available for the treatment of bone destruction in inflammatory diseases and in aging, and may identify new anabolic pathways to build bone.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AR067394-02
Application #
8919245
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Chen, Faye H
Project Start
2014-09-01
Project End
2017-02-28
Budget Start
2015-09-01
Budget End
2017-02-28
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
Pawaria, Sudesh; Sharma, Shruti; Baum, Rebecca et al. (2017) Taking the STING out of TLR-driven autoimmune diseases: good, bad, or indifferent? J Leukoc Biol 101:121-126
Baum, Rebecca; Sharma, Shruti; Organ, Jason M et al. (2017) STING Contributes to Abnormal Bone Formation Induced by Deficiency of DNase II in Mice. Arthritis Rheumatol 69:460-471
Baum, Rebecca; NĂ¼ndel, Kerstin; Pawaria, Sudesh et al. (2016) Synergy between Hematopoietic and Radioresistant Stromal Cells Is Required for Autoimmune Manifestations of DNase II-/-IFNaR-/- Mice. J Immunol 196:1348-54
Pawaria, Sudesh; Moody, Krishna L; Busto, Patricia et al. (2015) An unexpected role for RNA-sensing toll-like receptors in a murine model of DNA accrual. Clin Exp Rheumatol 33:S70-3
Baum, Rebecca; Sharma, Shruti; Carpenter, Susan et al. (2015) Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J Immunol 194:873-7