In this exploratory project, we are proposing to develop a new strategy to overcome radiation resistance of leukemic stem cells in B-lineage ALL using a novel recombinant biotherapeutic agent, namely CD19-Ligand, for selectively amplifying radiation-induced pro-apoptotic signaling. The long-term goal of the proposed research is to establish """"""""personalized"""""""" radiation therapy regimens against relapsed B-lineage ALL employing a recombinant biotherapeutic agent to selectively increase the anti-leukemic potency of ionizing radiation. We hypothesize that the treatment outcome of relapsed B-lineage ALL patients can be improved by using recombinant CD19-Ligand in combination with TBI in the context of HSCT.
Under Specific Aim 1, we will examine the effects of recombinant CD19-L on in vitro radiation resistance of radiation-resistant ALL cell lines as well as primary ALL cells from relapsed B-lineage ALL patients using quantitative flow cytometric apoptosis assays and clonogenic assays (Year 1 of the Project). We hypothesize that CD19-L will amplify radiation- induced pro-apoptotic BTK signals thereby markedly and selectively enhancing radiation-induced apoptosis of CD19+ B-lineage ALL cells as well as augmenting radiation-induced death of their clonogenic fraction. The radiation resistance of leukemic cells will be measured using our standard quantitative flow cytometric (CD19/Annexin V staining) and confocal (TUNEL) apoptosis assay platforms.
Under Specific Aim 2, we will examine the effects of the CD19-L on in vivo radiation resistance of leukemic stem cells in primary bone marrow specimens from relapsed B-lineage ALL patients using SCID mouse xenograft models of relapsed B- lineage ALL and sublethal TBI (Year 2 of the Project). We anticipate that the use of CD19-L before and concomitant with radiation will markedly enhance the anti-leukemic potency of TBI in the context of HSCT. Likewise, the sequential administration of TBI and post-TBI CD19-L is expected to be more effective than TBI alone. We will first perform mouse toxicity and pharmacokinetics experiments to determine non-toxic dose levels of CD19-L and then examine the effects of CD19-L on the anti-leukemic potency of sublethal TBI (2 Gy) against leukemic stem cells in primary bone marrow specimens from relapsed patients as well as radiation- resistant B-lineage ALL cell lines in a SCID mouse xenograft model system. Our working hypothesis is that CD19-L plus TBI regimens will be more effective than TBI alone in improving the event-free survival outcome of SCID mice challenged with primary B-lineage ALL cells. We anticipate that the successful completion of this exploratory research project will provide the first preclinical proof-of-principle for a potentially paradigm-shifting therapeutic innovation against relapsed B-lineage ALL, whereby the radiation resistance of leukemic stem cells is overcome using recombinant CD19-L as a selective radiosensitizer that amplifies pro-apoptotic signaling after radiation.
Currently, the major challenge in the treatment of childhood leukemia is to cure patients who experience a recurrence of their cancer despite intensive chemotherapy. The purpose of the proposed research is the development of an effective treatment
Showing the most recent 10 out of 15 publications