Lung cancer and chronic obstructive pulmonary disease (COPD) share a strong environmental risk factor (cigarette smoke exposure) and the presence of COPD increases the risk of developing lung cancer up to 4.5 times. Sirtuin 1 (SIRT1), a NAD+-dependent protein/histone deacetylase, has been implicated as a key regulator of metabolism, inflammation, immune function, apoptosis, and tumor development. It has been reported that SIRT1 levels were reduced in smokers and emphysema/COPD patients as well as in animals exposed to smoke. However, the role of SIRT1 in the pathogenesis of lung cancer, specifically, on tumor promotion and progression has not been explored. This information is greatly needed in the highlighting of SIRT1 with dual functions in tumor promoter and tumor suppressor. There are no dietary components and pharmacological agents so far that have convincingly been shown to prevent/alter the progress of lung cancer. This emphasizes the great need for the development of new dietary prevention/intervention agents against this devastating disease. A primary data analysis pooled from seven large well-implemented cohorts showed that increased dietary intake or higher blood levels of one specific xanthophylls carotenoid, b- cryptoxanthin (BCX), is strongly associated with a reduced risk of lung cancer in current smokers. It is not clear what molecular mechanism(s) is involved in BCX action, as a unique biological function, against lung cancer risk. We hypothesize that the down-regulation of SIRT1 is a major mechanism involved in the pathogenesis of the lung cancer promotion by cigarette smoke/nicotine, whereas BCX targets SIRT1 signaling pathway as its chemopreventive action. This hypothesis has been based on our recent findings that nicotine, the main addictive component of tobacco smoke, markedly reduced lung SIRT1 levels accompanying with emphysema and increased both multiplicity and volume of lung tumors in the A/J lung cancer mouse model. Importantly, BCX treatment restored nicotine-reduced lung SIRT1 protein to normal levels and inhibited both nicotine-induced emphysema and nicotine-promoted lung tumor development. We propose two specific aims: 1) Explore the role of SIRT1 signaling pathway in pathogenesis of smoke/nicotine- promoted lung cancer development; and 2) Determine the ability of BCX to modulate SIRT1 signaling pathway as a unique mechanism for prevention of lung cancer development. The investigation of the role of SIRT1 in lung diseases offers novel opportunities to increase our understanding of mechanisms involved in the pathogenesis of COPD and lung cancer. By demonstrating that dietary BCX is effective in targeting the SIRT1 signaling pathway and inhibiting COPD and lung carcinogenesis, this research will open a new prevention/intervention avenue of BCX to reduce lung cancer risk.

Public Health Relevance

Tobacco smoking is associated with the development and progression of a variety of diseases, in particular chronic obstructive pulmonary disease (COPD) and lung cancer. This project will elucidate the role of SIRT1 as one of the mechanistic basis for smoke/nicotine promoted emphysema and lung cancer development and provide the evidence-based scientific verification of b-cryptoxanthin as a dietary preventive agent against emphysema and lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21CA176256-02
Application #
8819111
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Flores, Roberto L
Project Start
2014-03-06
Project End
2017-02-28
Budget Start
2015-03-01
Budget End
2017-02-28
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Tufts University
Department
Nutrition
Type
Organized Research Units
DUNS #
039318308
City
Boston
State
MA
Country
United States
Zip Code
Iskandar, Anita R; Miao, Benchun; Li, Xinli et al. (2016) ?-Cryptoxanthin Reduced Lung Tumor Multiplicity and Inhibited Lung Cancer Cell Motility by Downregulating Nicotinic Acetylcholine Receptor ?7 Signaling. Cancer Prev Res (Phila) 9:875-886
Aizawa, Koichi; Liu, Chun; Tang, Sanyuan et al. (2016) Tobacco carcinogen induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation. Int J Cancer 139:1171-81
Li, Xinli; Lian, Fuzhi; Liu, Chun et al. (2015) Isocaloric Pair-Fed High-Carbohydrate Diet Induced More Hepatic Steatosis and Inflammation than High-Fat Diet Mediated by miR-34a/SIRT1 Axis in Mice. Sci Rep 5:16774
Li, Xinli; Liu, Chun; Ip, Blanche C et al. (2015) Tumor progression locus 2 ablation suppressed hepatocellular carcinoma development by inhibiting hepatic inflammation and steatosis in mice. J Exp Clin Cancer Res 34:138
Stice, Camilla P; Liu, Chun; Aizawa, Koichi et al. (2015) Dietary tomato powder inhibits alcohol-induced hepatic injury by suppressing cytochrome p450 2E1 induction in rodent models. Arch Biochem Biophys 572:81-88
Rafacho, Bruna Paola Murino; Stice, Camilla Peach; Liu, Chun et al. (2015) Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice. Hepatobiliary Surg Nutr 4:124-34
Ip, Blanche C; Liu, Chun; Ausman, Lynne M et al. (2014) Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice. Cancer Prev Res (Phila) 7:1219-27