Pancreatic cancer is a death sentence for patients diagnosed with this disease, as there are few effective treatments. Gemcitabine is currently the standard therapy for human pancreatic cancer patients. However, gemcitabine only increases survival rate of human pancreatic cancer patients with advanced disease by a medium time of 5 weeks since human pancreatic cancer cells are often resistant to gemcitabine. Therefore, development of novel agent that can overcome pancreatic cancer resistance to gemcitabine is in urgent need. We have recently discovered that a natural compound (verticillin A) purified from pathogen-infected wild mushrooms can effectively overcome resistance of human cancers to therapeutic agents both in vitro and in vivo. We have now identified the molecular target of verticillin A: Verticillin A is a specific inhibitor of histone methyltransferases (HMTases) SUV39H1, SUV39H2, G9a and GLP, all of which catalyze methylation of lysine 9 of histone H3 (H3K9). Verticillin A inhibits these HMTases to de-methylate H3K9me2 and H3K9me3, resulting in transcriptional activation of epigenetically silenced apoptosis-regulatory genes and sensitization of human cancer cells to apoptosis- inducing therapeutic agents. Importantly, we observed that verticillin A is extremely effective in sensitization of human pancreatic cancer cell to gemcitabine-mediated growth inhibition in vitro. The objective of this project is to elucidate te mechanism of verticillin A action in human pancreatic cancer cells and to determine the efficacy of verticillin A in vivo. Our hypothesis is that verticillin A inhibits H3K9 methylation to reactivte transcription of epigenetically silenced apoptosis regulatory genes to sensitize human pancreatic cancer cell to gemcitabine-induced apoptosis. To test this hypothesis, we will pursue 2 specific aims: 1) test the hypothesis that verticillin A overcomes human pancreatic cancer resistance to gemcitabine through inhibition of H3K9 methylation to activate transcription of apoptosis regulatory genes;and 2) determine the efficacy of verticillin A in overcoming pancreatic cancer resistance to standard chemotherapeutics in vivo. Successful completion of the proposed studies has the potential to develop verticlillin A as an adjunct agent to overcome pancreatic cancer resistance to gemcitabine in human cancer therapy.

Public Health Relevance

Successful completion of the proposed studies in this project has the potential to develop verticlillin A as an adjunct agent to overcome pancreatic cancer resistance to gemcitabine in human cancer therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA185909-01
Application #
8692271
Study Section
Special Emphasis Panel (ZCA1-SRLB-1 (J1))
Program Officer
Fu, Yali
Project Start
2014-06-04
Project End
2016-05-31
Budget Start
2014-06-04
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$196,947
Indirect Cost
$66,447
Name
Georgia Regents University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Lu, Chunwan; Yang, Dafeng; Sabbatini, Maria E et al. (2018) Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 18:149
Lu, Chunwan; Talukder, Asif; Savage, Natasha M et al. (2017) JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 6:e1291106
Lu, Chunwan; Paschall, Amy V; Shi, Huidong et al. (2017) The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion. J Natl Cancer Inst 109:
Paschall, Amy V; Liu, Kebin (2016) An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis. J Vis Exp :
Lu, Chunwan; Redd, Priscilla S; Lee, Jeffrey R et al. (2016) The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 5:e1247135
Paschall, Amy V; Zhang, Ruihua; Qi, Chen-Feng et al. (2015) IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol 194:2369-79
Paschall, Amy V; Liu, Kebin (2015) Epigenetic Regulation of Apoptosis and Cell Cycle Regulatory Genes in Human Colon Carcinoma Cells. Genom Data 5:189-191
Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng et al. (2015) IFN? Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res 3:795-805
Paschall, Amy V; Yang, Dafeng; Lu, Chunwan et al. (2015) H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance. J Immunol 195:1868-82