Multiple myeloma (MM) is a devastating bone marrow (BM) cancer that remains uniformly fatal despite the emergence of novel therapeutics. The tumor microenvironment promotes tumor growth and resistance to chemotherapy through poorly understood interactions between tumor cells and the surrounding BM cells. We have recently demonstrated that a population of BM myeloid-derived suppressor cells is involved in regulation of MM progression. These cells abundantly produce the pro-inflammatory protein S100A9. Our preliminary data indicate that this protein regulates MM survival and growth, and we hypothesize that this effect is at least partially mediated by a direct effect of S100A9 in increasing megakaryopoiesis, and that increased production of angiogenic factors by megakaryocytes and platelets leads to increased BM angiogenesis and tumor progression. We propose to test this hypothesis by determining the molecular effects of S100A9 on megakaryocytes and by testing a novel S100A9 inhibitor in models of MM to see if it reduces megakaryopoiesis and angiogenesis and thereby improves MM outcomes. The following specific aims will be addressed:
Specific Aim 1. To determine the molecular mechanisms underlying the effect of S100A9 on megakaryocytes;
Specific Aim 2. To investigate the role of S100A9 as a novel therapeutic target in MM.

Public Health Relevance

Multiple myeloma is a common and devastating blood cancer. Despite the emergence of novel therapeutics, myeloma remains to be an incurable disease. Bone marrow microenvironment plays a critical role in myeloma cells survival and progression; however molecular mechanisms responsible for interactions between host and cancer cells are poorly understood. Proposed study will contribute not only to our understanding of these mechanisms but also will test a novel therapy that target myeloma cell interaction with its microenvironment. These studies, therefore, will address a significant clinical gap existing in the management of this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA195020-01A1
Application #
9099354
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Howcroft, Thomas K
Project Start
2016-05-01
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia (2017) Bone marrow myeloid cells in regulation of multiple myeloma progression. Cancer Immunol Immunother 66:1007-1014