The vast array of splice variants of mu opioid receptors (MOR-1) gene (Oprm1) can be divided into two groups based upon the promoters responsible for their generation. The primary promoter is associated with exon 1 and generates a large number of traditional 7 transmembrane domain receptors. The second promoter, associated with exon 11, located approximately 30 kb upstream of exon 1, generates a number of truncated, 6 transmembrane domains. Using a novel radioligand 125I-BNtxA synthesized in our laboratories, we recently reported a novel exon 11-associated binding site in a triple KO mouse lacking all exon 1- containing MOR-1 splice variants as well as delta and kappa1 receptors, that was lost in the exon 11 KO mice. IBNtxA is an effective analgesic, with a potency 10-fold greater than morphine. This analgesia persists in the triple KO mice, but is lost in the exon 11 KO mice. Despite it potent analgesic actions, IBNtxA lacks respiratory depression, significant constipation, physical dependence or reward. It shows no cross tolerance to morphine and can be given to morphine-dependent mice without a decrease in its own analgesic actions or the precipitation of withdrawal. Thus, this ligand avoids many of the problematic side-effects seen with traditional opioids by targeting truncated 6 transmembrane domain splice variants of the mu opioid receptor MOR-1(6TM/E11). I propose to use it as a lead compound to design a library of opioid analgesics. In spite of its favorable pharmacology, its selectivity for the new target over the traditional ones is only modest and can be improved. The goal of this project is to obtain selective and potent 6TM/E11 analgesics, establish an SAR and generate useful biochemical probes to study the biochemistry/molecular pharmacology of these sites. Analogs will include compounds based upon the 4,5-epoxymorphinan scaffold of IBNtxA and the morphinan scaffold (4,5-epoxymorphinans lacking the ethereal oxygen bridging rings A and C). Preliminary data suggests that an aryl amido at the 6-position of the opiate coupled with an iodine at the 3 or 4 position of the aryl enhances the affinity for the 6TM/E11 site. We will explore the chemical space around the 6 position of the 4,5-epoxymorphinan scaffold with various substituents. Other compounds include substituents on the tertiary nitrogen atom, the14-OH, and using aryl amido- epoxymorphinans with a double bond between 7,8 position. Finally, aryl amido-morphinans will also be synthesized. All synthesized compounds will be characterized for selectivity using in vitro radioligand binding assays and useful compounds will be evaluated in vivo.

Public Health Relevance

Treatment of pain remains a major unmet need. Opiates continue to be useful pharmacotherapy for treatment of moderate to chronic pain but suffer from severe side effects that diminish the quality of life. The development of safe, effective and well tolerated pain medication without side-effects based on IBNtxA or other 6TM/E11-associated targets will be a major advancement in the treatment of pain that would greatly enhance both quality and length of life of patients both in the US and worldwide.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21DA034106-01
Application #
8353038
Study Section
Special Emphasis Panel (ZRG1-DDNS-C (01))
Program Officer
Rapaka, Rao
Project Start
2012-09-15
Project End
2014-06-30
Budget Start
2012-09-15
Budget End
2013-06-30
Support Year
1
Fiscal Year
2012
Total Cost
$228,625
Indirect Cost
$103,625
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Che, Tao; Majumdar, Susruta; Zaidi, Saheem A et al. (2018) Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 172:55-67.e15
Urai, Ákos; Váradi, András; Sz?cs, Levente et al. (2017) Synthesis and pharmacological evaluation of novel selective MOR agonist 6?-pyridinyl amidomorphines exhibiting long-lasting antinociception. Medchemcomm 8:152-157
Marrone, Gina F; Lu, Zhigang; Rossi, Grace et al. (2016) Tetrapeptide Endomorphin Analogs Require Both Full Length and Truncated Splice Variants of the Mu Opioid Receptor Gene Oprm1 for Analgesia. ACS Chem Neurosci 7:1717-1727
Kruegel, Andrew C; Gassaway, Madalee M; Kapoor, Abhijeet et al. (2016) Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. J Am Chem Soc 138:6754-64
Váradi, András; Marrone, Gina F; Palmer, Travis C et al. (2016) Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit ?-Arrestin-2. J Med Chem 59:8381-97
Váradi, András; Palmer, Travis C; Haselton, Nathan et al. (2015) Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction. ACS Chem Neurosci 6:1570-7
Pescatore, Robyn; Marrone, Gina F; Sedberry, Seth et al. (2015) Synthesis and pharmacology of halogenated ?-opioid-selective [d-Ala(2)]deltorphin II peptide analogues. ACS Chem Neurosci 6:905-10
Pickett, Julie E; Váradi, András; Palmer, Travis C et al. (2015) Mild, Pd-catalyzed stannylation of radioiodination targets. Bioorg Med Chem Lett 25:1761-1764
Váradi, András; Marrone, Gina F; Eans, Shainnel O et al. (2015) Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior. ACS Chem Neurosci 6:1813-24
Váradi, András; Palmer, Travis C; Notis Dardashti, Rebecca et al. (2015) Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles. Molecules 21:E19

Showing the most recent 10 out of 12 publications