Cancer initiation and progression is determined by both genetic and epigenetic changes. Histone deacetylases (HDAC) are enzymes actively involved in chromatin remodeling and are aberrantly expressed and dysregulated in multiple types of human cancers. HDAC inhibitors (HDACi) represent an emerging class of drugs that exhibit a broad range of anticancer effects. As a result of their broad anticancer activity, HDACi are particularly well suited for synergistic combinations with conventional anticancer drugs. The ability to selectively deliver combinations of HDACi with conventional anticancer drugs has the potential to greatly enhance the treatment repertoire and efficacy for many types of cancers. The objective of this proposal is to develop nanoparticles capable of targeted, simultaneous, combined delivery of HDACi and anticancer drugs into lung cancer. The central hypothesis is that using novel biodegradable polycaprolactones with high content of pendant HDACi moieties (HDPCL) will enhance activity of multiple anticancer drugs delivered by nanoparticles prepared from HDPCL and targeted to lung tumors overexpressing mucin 1. The hypothesis is based on our current studies with HDPCL and the well-established role of HDAC inhibition in enhancing activity of multiple anticancer drugs. The overall objective of this application will be achieved b pursuing three specific aims: 1) synthesize biodegradable polycaprolactones with pendant HDACi groups (HDPCL); 2) evaluate if delivery by HDPCL improves drug activity in lung cancer cells; and 3) determine in vivo if HDPCL delivery improves antitumor activity in orthotopic lung cancer model. The approach is innovative because of the novel type of biodegradable polyesters with high HDACi loading (up to 59 wt %) and controlled HDACi release suitable for combination delivery of conventional anticancer drugs. The proposed research is significant because it will establish a widely applicable and versatile method for simultaneous, targeted delivery of chemotherapeutics and HDACi to improve delivery and therapeutic outcome in lung cancer. Approaches that rely on combinations of active agents with synergistic or additive effect have the potential to greatly enhance the efficacy of cancer therapy.

Public Health Relevance

Effective treatment of complex multifactorial diseases like cancer requires combinations of multiple drugs. There is a critical need to develop novel technologies to better deliver drug combinations. The proposed research is relevant to public health because it will develop such a new delivery system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB019175-01A1
Application #
8891901
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Tucker, Jessica
Project Start
2015-04-01
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
1
Fiscal Year
2015
Total Cost
$202,504
Indirect Cost
$40,307
Name
University of Nebraska Medical Center
Department
Other Basic Sciences
Type
Schools of Pharmacy
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Kularatne, Ruvanthi N; Washington, Katherine E; Bulumulla, Chandima et al. (2018) Histone Deacetylase Inhibitor (HDACi) Conjugated Polycaprolactone for Combination Cancer Therapy. Biomacromolecules 19:1082-1089
Xie, Ying; Yu, Fei; Tang, Weimin et al. (2018) Synthesis and Evaluation of Chloroquine-Containing DMAEMA Copolymers as Efficient Anti-miRNA Delivery Vectors with Improved Endosomal Escape and Antimigratory Activity in Cancer Cells. Macromol Biosci 18:
Wang, Yazhe; Xie, Ying; Li, Jing et al. (2017) Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano 11:2227-2238
Peng, Zheng-Hong; Xie, Ying; Wang, Yan et al. (2017) Dual-Function Polymeric HPMA Prodrugs for the Delivery of miRNA. Mol Pharm 14:1395-1404
Sleightholm, Richard; Yang, Bin; Yu, Fei et al. (2017) Chloroquine-Modified Hydroxyethyl Starch as a Polymeric Drug for Cancer Therapy. Biomacromolecules 18:2247-2257
Senevirathne, Suchithra A; Washington, Katherine E; Miller, Jason B et al. (2017) HDAC Inhibitor Conjugated Polymeric Prodrug Micelles for Doxorubicin Delivery. J Mater Chem B 5:2106-2114
Yu, Fei; Xie, Ying; Wang, Yan et al. (2016) Chloroquine-Containing HPMA Copolymers as Polymeric Inhibitors of Cancer Cell Migration Mediated by the CXCR4/SDF-1 Chemokine Axis. ACS Macro Lett 5:342-345
Yu, Fei; Li, Jing; Xie, Ying et al. (2016) Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. J Control Release 244:347-356
Haseeb, Ridwan; Lau, Michael; Sheah, Max et al. (2016) Synthesis and Characterization of New Chlorhexidine-Containing Nanoparticles for Root Canal Disinfection. Materials (Basel) 9:
Li, Jing; Yu, Fei; Chen, Yi et al. (2015) Polymeric drugs: Advances in the development of pharmacologically active polymers. J Control Release 219:369-382