Metal exposure has long been recognized as an environmental factor that contributes to the onset of neurodegenerative diseases. Chronic exposure to high levels of manganese (Mn) results in an extrapyramidal disorder referred to as manganism, characterized by cognitive, psychiatric and motor deficits resembling Parkinson's disease. At the cellular level, Mn impairs mitochondrial respiration, leading to energy failure and generation of reactive oxygen species (ROS). The autophagy-lysosome pathway is an essential component of intracellular degradation and quality control, and confers cytoprotection against neurodegeneration by timely removal of toxic proteins and dysfunctional mitochondria. It is widely accepted that autophagic dysfunction contributes to pathogenesis of various neurodegenerative disorders, but the role of autophagy in Mn-induced neurotoxicity has yet to be established. Our preliminary studies have shown that Mn exposure results in autophagic dysregulation both in vitro and in vivo. Pharmacological activation of autophagy ameliorated Mn-induced mitochondrial superoxide production and neuronal cell death, implicating autophagy failure in the etiology of Mn neurotoxicity. Furthermore, we found that Mn blocked nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy and lysosome-related genes. Our novel findings warrant further investigation of the mechanisms and functional role of autophagic dysfunction in Mn-induced neurotoxicity. Our proposal will test the hypothesis that Mn impairs autophagy by inhibiting TFEB activity, and that compromised autophagy contributes to the pathogenesis of Mn neurotoxicity. Specifically, in Aim 1, we will characterize the alterations in autophagic activity in a mouse model exposed to Mn. We also aim to determine the contribution of autophagy failure to Mn-induced neurotoxicity by examining whether restoring autophagy results in improved mitochondrial function and neurological outcomes.
In Aim 2, we will establish the mechanistic link between loss of TFEB function and autophagy failure in Mn-induced neurotoxicity. We anticipate that the proposed study will provide novel information about cellular and molecular mechanisms underlying Mn-induced neuropathology, which may serve as a foundation for generating efficacious therapeutic strategies to combat Mn toxicity.

Public Health Relevance

Environmental exposure to excessive manganese (Mn) levels results in a Parkinson's like neurological disorder referred to as manganism. The proposed study will use cell cultures and mouse models to elucidate the mechanisms underlying Mn-induced autophagic dysfunction and its functional relevance to Mn neurotoxicity. The outcomes of our studies will provide novel mechanistic insights into Mn-induced neurotoxicity and establish autophagic pathway as a novel therapeutic target to combat manganism and potentially other neurodegenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Exploratory/Developmental Grants (R21)
Project #
6R21ES028960-02
Application #
9866157
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Hollander, Jonathan
Project Start
2018-09-30
Project End
2020-08-31
Budget Start
2019-01-01
Budget End
2019-08-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461