or Abstract The successful application of magnification devices for reading and daily tasks is predicated on their correct use by individuals with low vision (LV). Barriers related to transportation, geography, and/or co- morbidities often limit LV patients? ability to attend several in-office training sessions as part of low vision rehabilitation (LVR) to optimize visual function with magnification devices. A promising solution is real-time videoconferencing to provide telerehabilitation, involving remotely delivered LVR services by a LVR provider in- office to a patient at home. Telerehabilitation for LV appears to be feasible and acceptable by both patients and LVR providers, yet there are no published outcomes on the potential to improve patients? visual functioning. Another key issue in LVR is the need for an effective system to continually assess how patients are functioning at home. Ideally this would involve a non-invasive, efficient method to assess when magnifier device abandonment occurs, so that a timely telerehabilitation session can be initiated. Small Bluetooth low energy beacon sensors attached to the handles of magnifiers can collect real-time data regarding minute-to-minute environmental changes, which might serve as an indicator of magnifier use by LV patients at home. Specifically, we propose to assess the potential for telerehabilitation to enhance visual function by providing remotely-delivered LVR training to use magnification devices. Following one in-office training session for new magnification device(s), we aim to determine if there is additional gain in visual functioning by randomizing subjects to telerehabilitation or additional in-office LVR (active control). This will provide estimates of effect size for changes in visual function measures to plan a future larger-scale randomized controlled trial. Participants will be assessed before and after two consecutive periods: (1) one month after a single LVR training session, followed by (2) up to three LVR sessions over a three month period either via telerehabilitation in the participants? homes or LVR in-office. We will determine which patient characteristics and/or magnification devices are most likely to benefit from telerehabilitation, to be targeted in a future, phase III clinical trial. We will also determine whether data from Bluetooth beacon sensors are valid indicators of hand-held magnifier device usage by LV patients at home. We will deploy Estimote Sticker beacon sensors to subjects enrolled in Aim 1 during the same study period. We anticipate that beacon sensors will measure significantly increased temperature and/or motion when placed on the part of the magnification device held by LV patients while performing daily activities. Beacon sensor data will determine if it is feasible to assess when magnification devices are used, and if the frequency of magnifier use changes following telerehabilitation or in-office LVR. This work will evaluate and refine the procedures for implementing these technologies for LVR, in order to develop future randomized controlled trial protocols. We envision that telerehabilitation and beacon sensors could improve LV patient outcomes by providing follow-up LVR services in a more efficient and timely manner.
One goal of this research is to evaluate telerehabilitation as an efficient means to provide follow-up training sessions in order to help individuals with low vision improve their use of magnification devices and attempt to reduce visual disability while performing important daily activities, such as reading and/or other valued tasks. This is a high priority given the increasing prevalence of low vision, paucity of low vision rehabilitation providers, and barriers related to access to care, such as transportation and geography, which can be essentially eliminated with telerehabilitation. Another goal of this project is to determine whether significant changes in environmental data collected by Bluetooth low energy beacon sensors can be used as a solution to monitor and indicate when low vision patients? have abandoned the use of their magnification devices, which has the potential to substantially enhance patient management by providing timely low vision rehabilitation services.