The goal of this technology development project is to construct an instrument that measures simultaneously the mass and a two-dimensional fingerprint of the structure of biologically relevant molecules. The instrument is expected to greatly expand the utility of currently available mass spectrometers. This goal will be accomplished by inserting a proprietary structure-sensitive ionization method into existing mass spectrometer designs. The structure-sensitive mass spectrometer will find many uses in biomedical research. For example, it will enable researchers to rapidly observe and follow folding and/or mis-folding events of proteins implicated in diseases. In addition, proteomics research in general will benefit from the possibility to catalog a shape-and mass fingerprint library of proteins. The instrument development project is partitioned into two phases. During the first phase (R21), the design concepts are refined, a feasibility calculation is prepared, and designs are completed. Particular attention, at this point, is directed toward designing a flexible instrument that permits the experimental fine-tuning of the parameter space of the instrument. The prototype instrument is built during the second phase (R33). The inherent flexibility of the prototype allows the exploration of the parameters that optimize the performance. Bovine pancreatic trypsin inhibitor and model synthetic peptides are used as test systems. The goal of this pancreatic trypsin inhibitor and model synthetic peptides are used as test systems. The goal of this phase is to evaluate the structure specificity of the instrument, and to derive a set of parameters to guide the development of a commercial instrument with operating characteristics similar to those of existing mass spectrometers. This includes ease of use, rapid turn-around, and the possibility to automate and systematize the instrument. Commercial implementation will be sought by partnering with existing manufacturers of related equipment.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21HG002961-02
Application #
7126848
Study Section
Special Emphasis Panel (ZRR1-BT-6 (01))
Program Officer
Graham, Bettie
Project Start
2005-09-26
Project End
2008-08-31
Budget Start
2006-09-01
Budget End
2008-08-31
Support Year
2
Fiscal Year
2006
Total Cost
$175,209
Indirect Cost
Name
Brown University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Cardoza, Job D; Rudakov, Fedor M; Weber, Peter M (2008) Electronic spectroscopy and ultrafast energy relaxation pathways in the lowest Rydberg States of trimethylamine. J Phys Chem A 112:10736-43
Minitti, Michael P; Weber, Peter M (2007) Time-resolved conformational dynamics in hydrocarbon chains. Phys Rev Lett 98:253004
Minitti, Michael P; Cardoza, Job D; Weber, Peter M (2006) Rydberg fingerprint spectroscopy of hot molecules: structural dispersion in flexible hydrocarbons. J Phys Chem A 110:10212-8