It has been suggested that postnatal neurogenesis of granule cells (GCs) in the adult dentate gyrus serves important functions related to cognition and mood regulation, and that impairments in postnatal neurogenesis may occur in many diseases. In contrast to most research about adult neurogenesis, which focuses on the normal area where GCs are located, the granule cell layer, in this proposal we suggest a different area is important, the adjacent hilus. We propose that, in a variety of pathological conditions, adult-born GCs mismigrate into the hilus, and these ectopic GCs (EGCs) cause dysfunction. This hypothesis is based on studies of EGCs in an animal model of epilepsy, where it was found that hilar EGCs develop, and display abnormal excitability and circuitry. Surprisingly, we have now found evidence for hilar EGCs in animal models of psychiatric illness, such as Alzheimer's disease (AD). In parallel, other laboratories have reported that mismigration of adult-born GCs occurs in schizophrenia and alcoholism. In our pilot studies from transgenic mice that simulate AD, EGCs appear to develop abnormal excitability and circuitry, so we hypothesize that they will disrupt circuit function like they do in animal models of epilepsy. We also have preliminary data suggesting that EGCs are present in postmortem specimens from patients with psychiatric illness. Therefore, in this proposal we will attempt to show that hilar EGCs are not only relevant to epilepsy, but psychiatric disease. We hypothesize that EGCs develop in psychiatric disorders because the molecular mechanisms that are responsible for these conditions also disrupt the normal cues that control migration of GCs. The experiments that are proposed will use 1) anatomical approaches to prove that EGCs exist in animal models of psychiatric diseases, 2) slice electrophysiology to prove the EGCs have abnormal excitability and circuitry in these animal models, 3) behavioral experiments to prove the EGCs are accompanied by dysfunction in vivo, and 4) computational modeling to show that EGCs will disrupt specific functions of the dentate gyrus in a computational model of the normal dentate gyrus network. The results would be significant because they would provide evidence for a common pathology across many diseases that affect cognition and behavior: EGCs in the hilus of the dentate gyrus. This insight could lead to the development of new therapeutics to target the molecular mechanisms of migration. Imaging EGCs could become a new diagnostic strategy. Improved therapeutics and diagnostics are both important because many psychiatric disorders are complex, presenting difficulties both in diagnosis as well as treatment.

Public Health Relevance

It is often assumed that postnatal neurogenesis in the dentate gyrus improves cognitive function and mood, so increasing the rate of neurogenesis is beneficial. However, we suggest that this positive effect may not occur when pathological conditions exist, because these conditions disrupt the cues that control normal migration. Therefore, ectopic neurons can develop and disrupt function, and therapeutic strategies that support normal migration would prevent dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21MH090606-02
Application #
8197857
Study Section
Special Emphasis Panel (ZRG1-IFCN-C (03))
Program Officer
Glanzman, Dennis L
Project Start
2010-12-01
Project End
2014-11-30
Budget Start
2011-12-01
Budget End
2014-11-30
Support Year
2
Fiscal Year
2012
Total Cost
$187,978
Indirect Cost
$54,511
Name
Nathan Kline Institute for Psychiatric Research
Department
Type
DUNS #
167204762
City
Orangeburg
State
NY
Country
United States
Zip Code
10962
Bermudez-Hernandez, Keria; Lu, Yi-Ling; Moretto, Jillian et al. (2017) Hilar granule cells of the mouse dentate gyrus: effects of age, septotemporal location, strain, and selective deletion of the proapoptotic gene BAX. Brain Struct Funct 222:3147-3161
Kam, Korey; Duffy, Áine M; Moretto, Jillian et al. (2016) Interictal spikes during sleep are an early defect in the Tg2576 mouse model of ?-amyloid neuropathology. Sci Rep 6:20119
Scharfman, Helen E; Myers, Catherine E (2016) Corruption of the dentate gyrus by ""dominant"" granule cells: Implications for dentate gyrus function in health and disease. Neurobiol Learn Mem 129:69-82
Iyengar, Sloka S; LaFrancois, John J; Friedman, Daniel et al. (2015) Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 264:135-49
Scharfman, Helen E; Brooks-Kayal, Amy R (2014) Is plasticity of GABAergic mechanisms relevant to epileptogenesis? Adv Exp Med Biol 813:133-50
Fisher, Robert S; Scharfman, Helen E; deCurtis, Marco (2014) How can we identify ictal and interictal abnormal activity? Adv Exp Med Biol 813:3-23
Chin, Jeannie; Scharfman, Helen E (2013) Shared cognitive and behavioral impairments in epilepsy and Alzheimer's disease and potential underlying mechanisms. Epilepsy Behav 26:343-51
Bath, Kevin G; Scharfman, Helen E (2013) Impact of early life exposure to antiepileptic drugs on neurobehavioral outcomes based on laboratory animal and clinical research. Epilepsy Behav 26:427-39
Myers, Catherine E; Bermudez-Hernandez, Keria; Scharfman, Helen E (2013) The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 8:e68208
Scharfman, Helen E; Chao, Moses V (2013) The entorhinal cortex and neurotrophin signaling in Alzheimer's disease and other disorders. Cogn Neurosci 4:123-35

Showing the most recent 10 out of 20 publications