The exploration of brain epigenomes, including DNA methylation and covalent histone modifications, has provided fundamentally new insights into the mechanisms of brain ontogenesis and maturation. Moreover, deleterious mutations and rare structural variants in more than 50 genes encoding various types of chromatin regulators have been linked to neurodevelopmental diseases, including autism spectrum disorders (ASDs). Therefore, it is now generally accepted that proper regulation of chromatin structure and function during pre- and early postnatal development is critically important for the proper unfolding of cognitive abilities and emotional states. ASDs are a group of neurodevelopmental conditions bound together by broad syndromic overlap, with key behavioral deficits in social interaction, communication, and motor behavior including stereotypies. There is a strong genetic contribution to ASDs, yet environmental influences may also be etiologically important. Only a few studies, however, studied chromatin structures in diseased tissue (i.e., postmortem brain tissues from ASD subjects). In addition, epigenetic regulations, including histone modification landscapes, are highly specific for cell type, which is a key challenge for the field given the enormous cellular heterogeneity of the brain tissue, with multiple sub-population of inhibitory and excitatory neurons and various types of non-neuronal cells residing in the same tissue blocks. In this exploratory proposal, we will develop and test radically novel approaches in the human brain research, including the sorting of multiple subtypes of cortical neurons and the cell type-specific charting of 3- dimensional chromosomal architectures at selected genomic loci, with focus on ASDs. Specifically, we will profile open chromatin-associated histone methylation and acetylation, and promoter-enhancer associated chromosomal loop formations in GABAergic interneurons derived from the medial ganglionic eminence (MGE), in comparison to other neurons from ASD and control brains. If successful, the experiments proposed here will push the existing frontiers in human brain research, and for the first time, draw a connection between regulatory non-coding DNA, chromosomal architectures, and histone methylation profiles in multiple neuronal subtypes in health and disease.

Public Health Relevance

This application will explore potential changes in chromatin (here defined as the organization and packaging of the genome inside the cell nucleus) in specific cell types collected from brain of subjects on the autism spectrum, in comparison to controls.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21MH103877-01A1
Application #
8812711
Study Section
Special Emphasis Panel (ZRG1-BDCN-A (02))
Program Officer
Senthil, Geetha
Project Start
2014-09-26
Project End
2016-08-31
Budget Start
2014-09-26
Budget End
2015-08-31
Support Year
1
Fiscal Year
2014
Total Cost
$215,389
Indirect Cost
$65,389
Name
Icahn School of Medicine at Mount Sinai
Department
Psychiatry
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Wang, Daifeng; Liu, Shuang; Warrell, Jonathan et al. (2018) Comprehensive functional genomic resource and integrative model for the human brain. Science 362:
Li, Mingfeng; Santpere, Gabriel; Imamura Kawasawa, Yuka et al. (2018) Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:
Bryois, Julien; Garrett, Melanie E; Song, Lingyun et al. (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9:3121
Gusev, Alexander; Mancuso, Nicholas; Won, Hyejung et al. (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50:538-548
An, Joon-Yong; Lin, Kevin; Zhu, Lingxue et al. (2018) Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362:
Gandal, Michael J; Zhang, Pan; Hadjimichael, Evi et al. (2018) Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362:
Girdhar, Kiran; Hoffman, Gabriel E; Jiang, Yan et al. (2018) Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci 21:1126-1136
Kozlenkov, Alexey; Li, Junhao; Apontes, Pasha et al. (2018) A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci Adv 4:eaau6190
Doostparast Torshizi, Abolfazl; Duan, Jubao; Wang, Kai (2018) Transcriptional network analysis on brains reveals a potential regulatory role of PPP1R3F in autism spectrum disorders. BMC Res Notes 11:489
Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N et al. (2018) Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693-697

Showing the most recent 10 out of 21 publications