De novo loss-of-function mutations in the voltage-gated sodium channel SCN1A (encoding Nav1.1) are the main cause of Dravet syndrome (DS), a catastrophic early-life encephalopathy associated with prolonged and recurrent febrile seizures (FSs), treatment-resistant afebrile epilepsy, cognitive and behavioral deficits, and a 15-20% mortality rate. SCN1A mutations also lead to genetic epilepsy with febrile seizures plus (GEFS+), an inherited disorder characterized by early-life FSs and the development of a wide range of adult epilepsy subtypes. Current anti-epilepsy drugs often fail to provide adequate protection against the severe seizures and neuropsychiatric comorbidities that occur in patients with SCN1A mutations. Furthermore, almost a third of all epilepsy patients do not achieve adequate seizure control, highlighting the urgent need to develop multimodal treatments that can effectively mitigate the broad spectrum of clinical features associated with refractory epilepsies, while minimizing unwanted side effects. In this exploratory R21 proposal, we will test the hypothesis that Huperzine A (Hup A), a naturally occurring sesquiterpene Lycopodium alkaloid, will be efficacious in the treatment of DS. This hypothesis is based on the biological properties of Hup A, its demonstrated clinical safety, tolerability, ability to improve cognitive function, and our preliminary data. We will use heterozygous Scn1a knockout mice (a model of DS) to evaluate the potential of Hup A to increase seizure thresholds and prevent spontaneous seizure generation (Aim 1) and to ameliorate cognitive and behavioral deficits (Aim 2). This clinically relevant proposal could lay the foundation for the development of a novel therapy to treat SCN1A-derived epilepsies. Furthermore, since SCN1A mutations lead to reduced neuronal inhibition, which is a shared mechanism underlying many common forms of epilepsy, the outcome of this study may have important, broad implications for the treatment of refractory epilepsies.

Public Health Relevance

Mutations in the SCN1A gene are the main cause of Dravet syndrome, a catastrophic childhood epilepsy disorder. Current anti-epilepsy drugs often fail to provide adequate protection against the severe seizures and neuropsychiatric abnormalities that occur in patients with SCN1A mutations. In this exploratory R21 proposal we will test the hypothesis that Huperzine A, a naturally occurring compound, will be efficacious in the treatment of Dravet syndrome.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21NS098776-01
Application #
9195849
Study Section
Therapeutic Approaches to Genetic Diseases Study Section (TAG)
Program Officer
Whittemore, Vicky R
Project Start
2016-06-01
Project End
2018-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
1
Fiscal Year
2016
Total Cost
$232,624
Indirect Cost
$82,624
Name
Emory University
Department
Genetics
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Wong, Jennifer C; Dutton, Stacey B B; Collins, Stephen D et al. (2016) Huperzine A Provides Robust and Sustained Protection against Induced Seizures in Scn1a Mutant Mice. Front Pharmacol 7:357