The overall goal of the Cincinnati DDRDC: Center for Growth and Development (CGD) is to promote research that will yield insights into the fundamental processes of growth and development in the digestive tract and lead to novel or improved therapies. The specific goals of the CGD derive from the central theme that understanding the molecular mechanisms that control development of the gastrointestinal tract and liver will result in strategies to correct intestinal, nutritional and liver disease. Furthermore, our working model of interdisciplinary collaboration and our strong research environment will continue to lead to productive investigation in digestive diseases. The 28 full members and 6 associate members come from 9 different divisions within the Department of Pediatrics and a total of 6 Departments within the University of Cincinnati College of Medicine. These investigators are grouped into four working areas that all impact growth and development: Differentiation, Absorption and Secretion, Inflammation, and Regeneration and Repair.
The Aims of the Cincinnati DDRDC:CGD are: 1) To promote research in basic and translational science areas relevant to understanding of gastrointestinal and liver growth and development, as well as digestive disease, by studying differentiation, absorption and secretion, inflammation, and regeneration and repair; 2) To promote interactions among scientists with diverse backgrounds, 3) To attract basic investigators to the study of gastrointestinal and liver growth and development, and 4) To foster translational research in digestive disease.
The specific aims of the Center will be achieved primarily through three inter-related Biomedical Research Cores. 1) The Microarray Core will perform high quality state of the art experiments to identify novel genes expressed in the digestive organs of humans and in animal models of disease. 2) The Bioinformatics Core will provide design assistance and statistical and computational analysis for the complex experiments performed in the Microarray Core. 3) The Integrative Morphology Core will provide consultation and technical support for morphology studies, including in situ hybridization to localize gene expression identified by microarray analysis. Thus, at many levels, there is strong synergy among the research base and among the Biomedical Research Cores. This synergy will increase efficiency, promote new research directions, and foster collaborations.
Showing the most recent 10 out of 47 publications