The goal of this resource is to synthesize a wide range of variants of bioactive sphingosine 1-phosphate (81P) and glycosphingolipids that will be made available for collaborators with NHLBI and other investigators whose studies are pertinent to lung and vascular biology. The compounds to be prepared include chiral phosphonate and vinylphosphonate analogs of FTY720 and C-glycosides ofthe immunostimulatory glycolipid alpha-galactosylceramide. FTY720 is a structural analog of sphingosine that affects the activities of many enzymes in its unphosphorylated form, and is the first agent in a new class of small molecule SIP receptor agonists that alters lymphocyte traffic after it is phosphorylated by sphingosine kinase-2. The glycosphingolipicj alpha-galactosylceramide (alpha-GalCer, also known as KRN7000) is a synthetic analog of the marine natural product agelasphin that activates both human and mouse invariant natural killer T cells to produce immunoregulatory cytokines. Phosphonates and C-galactosides are metabolically stabilized derivatives of phosphate- and sugar-linked compounds, respectively. This proposal describes three projects related to pulmonary medicine that will be facilitated by the availability of unique analogs of the potent lipid mediators FTY720 and alpha-GalCer.
The specific aims are:
AIM 1. Inhibit SIP production and signaling in human pulmonary arterial smooth muscle cells by using analogs of (S)-FTY720-vinylphosphonate (a lead compound identified in previous studies supported by this grant as an inhibitor of sphingosine kinase).
AIM 2. Analyze the role of human plasma gelsolin in mediating the extracellular bioactivity of S IP and FTY720-phosphate, which act through the G protein-coupled receptors, in lung endothelial and lung epithelial cells.
AIM 3. Use alpha-C-GalCer analogs as adjuvants forthe live attenuated Bacillus Calmette-Guerin (BCG) vaccine.
Specific aims 1 and 2 will further our understanding of the physiological roles of the sphingosine kinase and the SIP signaling system in pathophysiology.
Specific aim 3 is anticipated to provide new insights into methods for developing vaccines with improved efficacy leading to control of tuberculosis.
This project will develop new chemical compounds that have the ability to alter cellular responses by acting on specific targets, leading to therapeutic treatments of human diseases and inflammatory disorders. The uses of the compounds include developing new approaches for prevention of pulmonary arterial hypertension, lung inflammation, and pulmonary infection from Mycobacterium tuberculosis.
Showing the most recent 10 out of 74 publications