Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
5R29DK049194-02
Application #
2149824
Study Section
Pharmacology A Study Section (PHRA)
Project Start
1995-01-01
Project End
1999-12-31
Budget Start
1996-01-01
Budget End
1996-12-31
Support Year
2
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Upstate Medical University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
058889106
City
Syracuse
State
NY
Country
United States
Zip Code
13210
Schulman, Jacqualyn J; Wright, Forrest A; Han, Xiaobing et al. (2016) The Stability and Expression Level of Bok Are Governed by Binding to Inositol 1,4,5-Trisphosphate Receptors. J Biol Chem 291:11820-8
Wright, Forrest A; Lu, Justine P; Sliter, Danielle A et al. (2015) A Point Mutation in the Ubiquitin Ligase RNF170 That Causes Autosomal Dominant Sensory Ataxia Destabilizes the Protein and Impairs Inositol 1,4,5-Trisphosphate Receptor-mediated Ca2+ Signaling. J Biol Chem 290:13948-57
Schulman, Jacqualyn J; Wright, Forrest A; Kaufmann, Thomas et al. (2013) The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 288:25340-9
Tsai, Yien Che; Leichner, Gil S; Pearce, Margaret M P et al. (2012) Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol Biol Cell 23:4484-94
Sliter, Danielle A; Aguiar, Mike; Gygi, Steven P et al. (2011) Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J Biol Chem 286:1074-82
Pednekar, Deepa; Wang, Yuan; Fedotova, Tatyana V et al. (2011) Clustered hydrophobic amino acids in amphipathic helices mediate erlin1/2 complex assembly. Biochem Biophys Res Commun 415:135-40
Lu, Justine P; Wang, Yuan; Sliter, Danielle A et al. (2011) RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J Biol Chem 286:24426-33
Pearce, Margaret M P; Wormer, Duncan B; Wilkens, Stephan et al. (2009) An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 284:10433-45
Wang, Yuan; Pearce, Margaret M P; Sliter, Danielle A et al. (2009) SPFH1 and SPFH2 mediate the ubiquitination and degradation of inositol 1,4,5-trisphosphate receptors in muscarinic receptor-expressing HeLa cells. Biochim Biophys Acta 1793:1710-8
Brodsky, Jeffrey L; Wojcikiewicz, Richard J H (2009) Substrate-specific mediators of ER associated degradation (ERAD). Curr Opin Cell Biol 21:516-21

Showing the most recent 10 out of 13 publications