Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
7R29HL042922-03
Application #
3472671
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Project Start
1989-08-01
Project End
1995-01-31
Budget Start
1991-02-11
Budget End
1992-01-31
Support Year
3
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Allegheny University of Health Sciences
Department
Type
Schools of Medicine
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19129
Crestanello, J A; Lingle, D M; Millili, J et al. (1998) Pyruvate improves myocardial tolerance to reperfusion injury by acting as an antioxidant: a chemiluminescence study. Surgery 124:92-9
Yokoyama, H; Lingle, D M; Crestanello, J A et al. (1996) Coenzyme Q10 protects coronary endothelial function from ischemia reperfusion injury via an antioxidant effect. Surgery 120:189-96
Kaplan, L J; Blum, H; Bellows, C F et al. (1996) Reversible injury: creatinine kinase recovery restores bioenergetics and function. J Surg Res 62:103-8
Crestanello, J A; Lingle, D M; Kamelgard, J et al. (1996) Ischemic preconditioning decreases oxidative stress during reperfusion: a chemiluminescence study. J Surg Res 65:53-8
Crestanello, J A; Kamelgard, J; Lingle, D M et al. (1996) Elucidation of a tripartite mechanism underlying the improvement in cardiac tolerance to ischemia by coenzyme Q10 pretreatment. J Thorac Cardiovasc Surg 111:443-50
Kaplan, L J; Bellows, C F; Blum, H et al. (1994) Ischemic preconditioning preserves end-ischemic ATP, enhancing functional recovery and coronary flow during reperfusion. J Surg Res 57:179-84
Kaplan, L J; Blum, H; Banerjee, A et al. (1993) Protecting myocardial creatine kinase activity during reperfusion improves bioenergetics and contractile function. J Surg Res 54:311-5
Banerjee, A; Grosso, M A; Brown, J M et al. (1991) Oxygen metabolite effects on creatine kinase and cardiac energetics after reperfusion. Am J Physiol 261:H590-7
Anderson, B O; Brown, J M; Bensard, D D et al. (1990) Reversible lung neutrophil accumulation can cause lung injury by elastase-mediated mechanisms. Surgery 108:262-7;discussion 267-8
Whitman, G J; Martel, D; Weiss, M et al. (1990) Reversal of protamine-induced catastrophic pulmonary vasoconstriction by prostaglandin E1. Ann Thorac Surg 50:303-5