Voice disorders affect approximately 6.6% of the working-age population in the United States. Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior referred to generically as vocal hyperfunction. Such behaviorally based disorders can be difficult to accurately assess in the clinical setting and could potentially be much better characterized by long-term ambulatory monitoring of vocal function as individuals engage in their typical daily activities. Devices that use a neck-placed miniature accelerometer (ACC) as a phonation sensor have shown the best potential for unobtrusive long-term monitoring of vocal function. The adoption, however, of this technology into clinical practice has been quite limited because of: 1) technical limitations of current devices, measures, and analysis algorithms; 2) the relatively high cost of commercially-available systems; and 3) the lack of statistically robust studies to determine the true diagnostic capabilities of ACC-based measures. The overall goal of the proposed project (in response to PAR-09-057) is to develop ACC-based ambulatory monitoring of vocal function into a valid, reliable, and cost-effective clinical tool that can be used to accurately identify and differentiate patterns of voice use that are associated with hyperfunctional voice disorders. Achieving this goal will: 1) greatly improve clinical assessment of these commonly-occurring types of voice disorders, 2) enable voice therapy to more accurately target specific hyperfunctional behaviors for individual patients, and 3) provide the basis for future efforts to develop ambulatory biofeedback approaches that have the potential to facilitate more efficient and effective behavioral treatment of these disorders. In the R21 phase of this project we will develop and validate a new, versatile, and cost-effective system for ambulatory voice monitoring that uses a neck-placed miniature ACC as the phonation sensor and a mobile personal digital device (e.g., a smartphone) as the data acquisition platform. An effort will be made to facilitate the continued availability of this technology for clinical use and development by designing system software and basic interface circuitry that is largely compatible with new generations of personal digital device architecture. The R33 phase of the project will focus on using the new ambulatory monitoring system to collect data from a large, statistically robust sample of patients with hyperfunctional voice disorders (before and after treatment) and matched controls. These data will be subjected to three types of analysis approaches in an effort to identify the best set of measures for differentiating among hyperfunctional and normal patterns of vocal behavior: 1) previously-developed ambulatory measures of vocal function that include vocal dosage; 2) measures based on estimates of glottal airflow that are extracted from the ACC signal using a new vocal system model, and 3) measures based on methods that have been used successfully in analyzing long-term recordings of other physiologic signals (e.g., electrocardiograms) for risk stratification of patients.

Public Health Relevance

The current proposal seeks to address the main goal set forth in Program Announcement PAR-09-057 from the National Institute on Deafness and Other Communication Disorders (NIDCD), which is '...to develop new or enhanced diagnostic, intervention and treatment paradigms with potential for widespread, cost-effective application in the NIDCD mission areas...', which include voice and speech. This goal will be accomplished in the current project by developing ambulatory voice monitoring into a valid, reliable, and cost-effective clinical tool that can be used to improve the diagnosis and treatment of voice disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
5R33DC011588-05
Application #
8858615
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Shekim, Lana O
Project Start
2011-04-06
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2017-03-31
Support Year
5
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Heller Murray, Elizabeth S; Lien, Yu-An S; Van Stan, Jarrad H et al. (2017) Relative Fundamental Frequency Distinguishes Between Phonotraumatic and Non-Phonotraumatic Vocal Hyperfunction. J Speech Lang Hear Res 60:1507-1515
Van Stan, Jarrad H; Mehta, Daryush D; Sternad, Dagmar et al. (2017) Ambulatory Voice Biofeedback: Relative Frequency and Summary Feedback Effects on Performance and Retention of Reduced Vocal Intensity in the Daily Lives of Participants With Normal Voices. J Speech Lang Hear Res 60:853-864
Van Stan, Jarrad H; Park, Se-Woong; Jarvis, Matthew et al. (2017) Measuring vocal motor skill with a virtual voice-controlled slingshot. J Acoust Soc Am 142:1199
Van Stan, Jarrad H; Maffei, Marc; Masson, Maria Lúcia Vaz et al. (2017) Self-Ratings of Vocal Status in Daily Life: Reliability and Validity for Patients With Vocal Hyperfunction and a Normative Group. Am J Speech Lang Pathol 26:1167-1177
Lien, Yu-An S; Heller Murray, Elizabeth S; Calabrese, Carolyn R et al. (2017) Validation of an Algorithm for Semi-automated Estimation of Voice Relative Fundamental Frequency. Ann Otol Rhinol Laryngol 126:712-716
Van Stan, Jarrad H; Mehta, Daryush D; Petit, Robert J et al. (2017) Integration of Motor Learning Principles Into Real-Time Ambulatory Voice Biofeedback and Example Implementation Via a Clinical Case Study With Vocal Fold Nodules. Am J Speech Lang Pathol 26:1-10
Espinoza, Víctor M; Zañartu, Matías; Van Stan, Jarrad H et al. (2017) Glottal Aerodynamic Measures in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction. J Speech Lang Hear Res 60:2159-2169
Galindo, Gabriel E; Peterson, Sean D; Erath, Byron D et al. (2017) Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds. J Speech Lang Hear Res 60:2452-2471
Mehta, Daryush D; Van Stan, Jarrad H; Hillman, Robert E (2016) Relationships between vocal function measures derived from an acoustic microphone and a subglottal neck-surface accelerometer. IEEE/ACM Trans Audio Speech Lang Process 24:659-668
Fryd, Amanda S; Van Stan, Jarrad H; Hillman, Robert E et al. (2016) Estimating Subglottal Pressure From Neck-Surface Acceleration During Normal Voice Production. J Speech Lang Hear Res 59:1335-1345

Showing the most recent 10 out of 21 publications