Cellularstatetransitions(i.e.frompluripotenttocommitted,replicativetoquiescent,etc.)requirethe coordinatedregulationofthousandsofgenes.Therapeuticallyharnessingthesetransitionsholdsgreat promiseforhumanhealth;?forinstance,autologousstemcelltherapyhasbeensuccessfullyusedin regenerativemedicineandcancertreatments,amongothers.Whilesomeofthekeyregulatoryswitchesare known,thefieldlacksasystems-levelunderstandingofthegenomiccircuitsthatcontrolthesetransitions, informationthatiscriticalforinformedclinicalintervention.Here,wewilldevelopanintegratedcomputational frameworktoidentifycoregeneregulatorycircuitsfromlargegenenetworksandpredicttheirdynamicsand regulatoryfunctionswithouttheneedofdetailednetworkkineticparameters.Advancesingenomicsprofiling technologyhaveenabledthemappingofgeneregulatorynetworks,thuswenowhavethecapacitytoidentify combinatorialinteractionsamonggenesandthemasterregulatorsofstatetransitions.Somesystemsbiology approacheshavesimulatedthedynamicsofageneregulatorycircuit,buttraditionalmethodssufferfromtwo keyissues.First,thereisnorationalruletochooseanappropriatesetofregulatorgenesinalargenetworkto model.Second,sinceitishardtodirectlymeasuremostnetworkkineticparametersfromexperiment, modelingresultsarebasedonasetofguessedparametersthatcanbelessthanoptimal,limitingthe applicationofmathematicalmodelingtolargesystemsandthepredictionpowerofsystemsbiology.To addresstheseissues,werecentlydevelopedalgorithmnamedrandomcircuitperturbation(RACIPE).RACIPE generatesanensembleofcircuitmodels,eachofwhichcorrespondstoadistinctsetofrandomkinetic parameters,anduniquelyidentifiesrobustfeatures,suchasclustersofstablegeneexpressionstates,by statisticalanalysis.WewillfurtherenhanceRACIPEalgorithmsforlargesystemsandnewdataanalysistools usingmachinelearning.Thisapproachwillconvertatraditionalnonlineardynamicsproblemintoadata analysisproblem,anessentialstepforextendingtheapplicationofgenecircuitmodelingtolargesystems.It alsoprovidesanovelstrategytointegratetop-downgenomicsapproacheswithbottom-upmathematical modeling.Thealgorithmswillbetestedandrefinedusingliterature-basedgenenetworks,publicgenomics data,anddatafromcollaboration,withafocusoncelldifferentiationindevelopmentalprocessesandstate transitionsinoncogenesis.Successoftheprojectwillresultinacomprehensivetoolkitthatwillunveilthegene regulatorymechanismofcellulardecision-makinginanycellofinterest.Thealgorithmicdevelopmentis expectedtohaveabroadimpactonnotonlybasicresearchinsystemsbiologybutalsoshedlighton therapeuticinterventioningenomicmedicine.

Public Health Relevance

TOPUBLICHEALTH Mosthumancomplexdiseasesaremultigenic,butourunderstandingoftheinteractionsbetweengenesin healthystatesandhowtheyaredisruptedindiseasestatesislacking.Computationalalgorithmswillbe designedtoconstructandmodelgeneregulatorycircuitsofhighercomplexitytofillanimportantgapinour understandingofthemaintenanceandtransitionsamongcellularstatesandtheirabnormalbehaviorin disease.Inthisproposal,wewilldevelopasuiteofsystems-biologytoolstoextendgenecircuitmodelingto largesystemsandintegrategenomicsdatarelevanttofundamentalcellbiology,cancer,andotherhuman diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
7R35GM128717-03
Application #
10246751
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Brazhnik, Paul
Project Start
2018-08-01
Project End
2023-07-31
Budget Start
2020-08-24
Budget End
2021-07-31
Support Year
3
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northeastern University
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Kohar, Vivek; Lu, Mingyang (2018) Role of noise and parametric variation in the dynamics of gene regulatory circuits. NPJ Syst Biol Appl 4:40