I have over 25 years of experience in sleep medicine epidemiological research and have played a leading role in studies that address the contributions of genetic, social and environmental risk factors to sleep disorders, the influences of sleep on health outcomes in children and adults, and the role of sleep interventions in improving health outcomes. My collaborators, mentees and I have identified that sleep apnea (SA) is highly prevalent, disproportionately affects Asians and African American children, and is associated with significantly increased risks for developing hypertension, stroke, heart failure, diabetes, and behavioral problems. We also have identified variability in these outcomes by sex, race/ethnicity, age, and genetic background. We have characterized the patterns of heritability for several SDB traits and through use of family-based and cohort studies (>20,000 individuals) have identified genome-wide significant associations for genetic variants in biological candidate genes, and sex- and sleep stage-specific analyses have provided insight into mechanisms that may explain the known sex and REM/NREM differences in SA severity. Despite this progress, however, the underlying molecular and physiological mechanisms for SA are not well understood, limiting both our ability to predict which patients with SA are most vulnerable to adverse health outcomes and our ability to develop treatments that reflect individual differences in SDB pathophysiology. Our emerging data suggest that these gaps may be overcome through systematic analysis of larger sets of polysomnography data, deriving more precise SDB phenotypes that reflect specific sleep and respiratory patterns, and linking these phenotypes to genomic and clinical data. Through leadership in multiple national consortia and multi-center studies we are poised to make transformative advances in understanding the phenotypic variability and genetics of sleep apnea and related traits. We plan to harness a critical mass of data, including those in the National Sleep Research Resource and genetic, genomic and clinical data available through several consortia, including the Trans- Omics in Precision Medicine and Partners HealthCare Biobank. We will expand our genetics/epidemiology team with leaders in sophisticated respiratory phenotyping, developing a multi-disciplinary program that will systematically extract quantitative metrics of SA phenotypes and link these to genetics, genomics, specific treatment responsiveness, and cardiovascular, metabolic and cognitive outcomes. Through collaborations with functional genomics laboratories, we will help identify functional genetic variants and clarify the function of genes and pathways associated with SA. We will use sophisticated statistical methods to derive and validate personalized medicine prediction algorithms based on these data streams. This enhanced biological understanding of SA will be translated into improved clinical care through better-informed clinical trials. Finally, we will create an environment that nurtures the development of new investigators equipped to use modern technologies and ?big data? to identify signatures of disease susceptibility and outcomes.

Public Health Relevance

Sleep apnea is a common disorder associated with many adverse health outcomes, but often unrecognized and under-treated. The usual measure of disease severity, the Apnea Hypopnea Index, does not adequately characterize disease subtypes reflective of differences in underlying anatomic and physiological risk factors, and thus poorly predicts which patients are most susceptible to adverse health outcomes and would benefit from treatment. The mainstay treatment is a CPAP machine, which stents the airway open without treating the underlying cause of the apnea. This program will systematically identify new measures of sleep apnea that reflect underlying mechanisms and allow subgroups of patients to be better characterized, facilitating the discovery of the molecular basis for sleep apnea and novel treatments.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Unknown (R35)
Project #
5R35HL135818-02
Application #
9406511
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Brown, Marishka
Project Start
2017-01-01
Project End
2023-12-31
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Cespedes Feliciano, Elizabeth M; Quante, Mirja; Rifas-Shiman, Sheryl L et al. (2018) Objective Sleep Characteristics and Cardiometabolic Health in Young Adolescents. Pediatrics 142:
Choi, Seung Hoan; Weng, Lu-Chen; Roselli, Carolina et al. (2018) Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA 320:2354-2364
Chen, Han; Cade, Brian E; Gleason, Kevin J et al. (2018) Multiethnic Meta-Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men. Am J Respir Cell Mol Biol 58:391-401
Mariani, Sara; Tarokh, Leila; Djonlagic, Ina et al. (2018) Evaluation of an automated pipeline for large-scale EEG spectral analysis: the National Sleep Research Resource. Sleep Med 47:126-136
Burkart, Kristin M; Sofer, Tamar; London, Stephanie J et al. (2018) A Genome-Wide Association Study in Hispanics/Latinos Identifies Novel Signals for Lung Function. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med 198:208-219
Kang, Seung-Gul; Mariani, Sara; Marvin, Stephanie A et al. (2018) Sleep EEG spectral power is correlated with subjective-objective discrepancy of sleep onset latency in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 85:122-127
Quante, Mirja; Khandpur, Neha; Kontos, Emily Z et al. (2018) A Qualitative Assessment of the Acceptability of Smartphone Applications for Improving Sleep Behaviors in Low-Income and Minority Adolescents. Behav Sleep Med :1-13
Grinde, Kelsey E; Qi, Qibin; Thornton, Timothy A et al. (2018) Generalizing polygenic risk scores from Europeans to Hispanics/Latinos. Genet Epidemiol :
Dunn, Erin C; Sofer, Tamar; Wang, Min-Jung et al. (2018) Genome-wide association study of depressive symptoms in the Hispanic Community Health Study/Study of Latinos. J Psychiatr Res 99:167-176
Costa, Madalena D; Davis, Roger B; Goldberger, Ary L (2017) Heart Rate Fragmentation: A Symbolic Dynamical Approach. Front Physiol 8:827

Showing the most recent 10 out of 17 publications